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Abstract

Visual Teach and Repeat (VT&R) allows an autonomous vehicle to accurately repeat a
previously traversed route using only vision sensors. Most VT&R systems rely on natively
3D sensors such as stereo cameras for mapping and localization, but many existing mobile
robots are equipped with only 2D monocular vision, typically for teleoperation. In this
paper, we extend VT&R to the most basic sensor configuration – a single monocular camera.
We show that kilometer-scale route repetition can be achieved with centimeter-level accuracy
by approximating the local ground surface near the vehicle as a plane with some uncertainty.
This allows our system to recover absolute scale from the known position and orientation
of the camera relative to the vehicle, which simplifies threshold-based outlier rejection and
the estimation and control of lateral path-tracking error – essential components of high-
accuracy route repetition. We enhance the robustness of our monocular VT&R system to
common failure cases through the use of color-constant imagery, which provides it with a
degree of resistance to lighting changes and moving shadows where keypoint matching on
standard grey images tends to struggle. Through extensive testing on a combined 30 km of
autonomous navigation data collected on multiple vehicles in a variety of highly non-planar
terrestrial and planetary-analogue environments, we demonstrate that our system is capable
of achieving route-repetition accuracy on par with its stereo counterpart, with only a modest
trade-off in robustness.

1 Introduction

For many mobile robotic applications including mining, surveillance, and search and rescue, it is essential
for the robot to be able to retrace its path or to traverse the same path accurately and reliably over long
periods of time. For repetitive navigation tasks like these, Visual Teach and Repeat (VT&R) has proven
to be an effective technology for enabling mobile robots to repeat a previously-traversed route with high
accuracy. Indeed, VT&R has already found applications in autonomous tramming for mining operations



(Marshall et al., 2008) and exploration missions in planetary-analogue environments (Furgale and Barfoot,
2010).

A typical VT&R system operates in two phases: a teach pass, and a repeat pass. In the teach pass, a human
operator drives the vehicle along a desired route while a vision sensor records imagery from which a map of
the route can be reconstructed. In subsequent repeat passes, the system localizes against the reconstructed
map and repeats the route autonomously, substituting dead-reckoned motion estimates from visual odometry
(VO) when map-based localization is unavailable (Furgale and Barfoot, 2010).

Of central importance to VT&R is the selection of a map representation. On the one hand, the map
may be a purely topological network of reference images or keyframes, where the navigation goal is to
match the live image to a target image using a visual-homing procedure. While purely topological maps
have been used with monocular (Matsumoto et al., 1996; Ohno et al., 1996; Jones et al., 1997; Goedemé
et al., 2007), stereo (Matsumoto et al., 2000), and omnidirectional vision (Tang and Yuta, 2001; Argyros
et al., 2005; Remazeilles et al., 2006) for teach-and-repeat navigation, visual-homing systems like these are
restricted to purely heading-based control, which only loosely bounds lateral path-tracking error. On the
other hand, the map may be purely metric (Baumgartner and Skaar, 1994; Kidono et al., 2002; Royer
et al., 2007), which enables lateral path-tracking error to be explicitly controlled, leading to more reliably
accurate route repetition. However, the large, globally consistent metric maps required to traverse long
routes are prohibitively expensive to create online. Topometric maps (Simhon and Dudek, 1998; Marshall
et al., 2008; Zhang and Kleeman, 2009; Furgale and Barfoot, 2010) combine the virtues of topological and
metric representations by allowing the system to navigate on a network of topologically connected metric
submaps rather than requiring global metric consistency. This has the effect of decoupling map size from
path length while still retaining metric information where it is needed.

The choice of sensor is also important to VT&R. Furgale and Barfoot (2010) showed that a stereo camera
is an effective sensor choice in a topometric VT&R system. Indeed, theirs was the first system capable of
autonomously repeating multi-kilometer routes in unstructured outdoor terrain using only a stereo camera.
Their system has since been extended to other natively 3D sensor configurations including appearance-based
lidar (McManus et al., 2013), multiple stereo cameras (Paton et al., 2015b), and RGB-D cameras. Recently,
Clement et al. (2015) investigated the use of a much simpler sensor configuration – a single 2D monocular
camera – in a VT&R system, with 3D information inferred from approximations of local scene geometry and
the known position and orientation of the camera relative to the vehicle.

A monocular VT&R system is particularly valuable in that it enables countless monocular robots (i.e.,
robots equipped with a single monocular camera) already deployed in the real world to perform previously
impossible navigation tasks. Commercially available monocular robots can be found in such application
domains as bomb disposal, aerial surveillance, and telepresence. Examples of monocular robots can also be
found in search and rescue operations, mining, construction, and personal assistive robotics, where they are
equipped with monocular vision mainly for teleoperation. By enabling such robots to autonomously navigate
previously-traversed routes via a simple software upgrade, we can enhance their functionality while avoiding
the potentially costly process of retrofitting them with additional sensors.

Several techniques exist for accomplishing online 3D simultaneous localization and mapping (SLAM) with
monocular vision. Traditionally, these techniques have been based on sparse keypoint detection and tracking,
and include filter-based approaches (Eade and Drummond, 2006; Davison et al., 2007) as well as online batch
techniques that make use of local bundle adjustment to limit the computational cost of the problem (Klein
and Murray, 2007; Zhao et al., 2010; Holmes and Murray, 2013). Recently, dense photometric approaches
to monocular SLAM have been developed that operate directly on per-pixel intensity measurements to
produce maps with a higher spatial density than is typically achievable using sparse keypoint-based methods
(Newcombe et al., 2011; Engel et al., 2014; Pizzoli et al., 2014). While the use of dense visual SLAM
in a VT&R system presents an interesting avenue of research, in this work we follow the tried-and-true
keypoint-tracking paradigm.



Regardless of density and representation, monocular SLAM algorithms can produce accurate 3D maps only
up to an unknown scale factor. This scale ambiguity complicates threshold-based outlier rejection schemes
such as Random Sample Consensus (RANSAC) (Fischler and Bolles, 1981), as well as the estimation and
control of lateral path-tracking error during the repeat pass, both of which are essential for high-accuracy
path-following. Furthermore, monocular SLAM systems are not well-suited to land vehicles with a forward-
facing camera, such as those used in our experiments, since it can be difficult to obtain measurements with
sufficient disparity to triangulate keypoints accurately. While pointing the camera sideways could solve this
problem, it would do so at the cost of making teleoperation and obstacle detection more difficult for the
types of robots we envision.

This paper builds on the work of our recent conference paper (Clement et al., 2015), in which we proposed to
represent the map as a manifold of locally planar ground surfaces with a representation of surface uncertainty,
rather than using a full monocular SLAM system to create a globally consistent map. This provides a simple
means of generating local metric information from the known height and orientation of the camera on the
vehicle, without requiring any specific camera motion. Similar techniques have succeeded in computing VO
with a monocular camera using both sparse feature tracking (Choi et al., 2011; Zhang et al., 2012; Farraj and
Asmar, 2013) and dense image alignment (Lovegrove et al., 2011; Zienkiewicz and Davison, 2014), but our
monocular VT&R system was the first to use such techniques for mapping and localization inside a control
loop, achieving route-repetition accuracy on par with an equivalent stereo system (Furgale and Barfoot,
2010) and an autonomy rate of 99.4% on 4.3 km of autonomous navigation.

In this paper, we substantially extend our previous work by incorporating color-constant imagery (Rat-
nasingam and Collins, 2010; Paton et al., 2015a) in our monocular localization pipeline to improve its
robustness to shadows and changing lighting conditions. In contrast to appearance-based lidar (McManus
et al., 2013), which achieves lighting-resistant localization using range and intensity images from a 3D lidar
sensor, our system does so using physics-based transformations of monocular RGB images based on assump-
tions about scene lighting and the imaging sensor. The difference is essentially one of active versus passive
sensing. Furthermore, our system does not rely on native 3D information such as one might obtain from
lidar or a stereo camera. Rather, we use simple assumptions about local scene geometry and the known
position and orientation of the camera relative to the vehicle to obtain approximate local 3D information.

While the use of color-constant imagery has already been shown to improve precision/recall performance on
visual place recognition tasks (Corke et al., 2013), as well as stereo localization quality in the presence of
shadows and changing lighting conditions (McManus et al., 2014; Paton et al., 2015a), it remains to be seen
whether and to what extent our monocular localization pipeline would benefit from their use. We address
this gap through offline testing of a lighting-resistant version of our monocular pipeline on a further 26 km
of autonomous navigation data collected at the Canadian Space Agency’s Mars Emulation Terrain facility.
Based on these data, we conduct a thorough comparison of our system’s localization quality to that of the
equivalent lighting-resistant stereo pipeline described by Paton et al. (2015a).

2 System Overview: Lighting-Resistant Visual Teach and Repeat

We first provide an overview of both the legacy VT&R system used in the experiments of Sections 4 and 5,
and the lighting-resistant VT&R system used in the experiments of Section 5. A detailed description and
analysis of the controller used in our experiments and the experiments of Paton et al. (2015a) is provided
by Ostafew et al. (2015).

Both systems’ localization pipelines are depicted graphically in Figure 1, in both their stereo and monocular
forms. The stereo and monocular localization pipelines differ mainly in the front-end image processing used
to generate 3D keypoints, while the lighting-resistant pipeline differs from the legacy pipeline in its use of
color-constant images as described in Section 2.1. Each new RGB image entering the pipeline first undergoes
a pre-processing step that de-warps and rectifies the image using a calibrated camera model. The system
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(a) Legacy localization pipeline using grey images only (Furgale and Barfoot, 2010; Clement et al.,
2015).
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(b) Lighting-resistant localization pipeline using grey images combined with color-constant images (Paton et al.,
2015a; this paper). The stacked grey-red-green blocks correspond to processing blocks that operate on both the grey
and color-constant images.

Figure 1: The major processing blocks of the stereo and monocular localization pipelines in both their grey-
only and lighting-resistant forms. The monocular pipeline shares most of the same processing blocks as its
stereo counterpart, differing mainly in the front-end image processing used to generate 3D keypoints, while
the lighting-resistant pipeline differs from the legacy pipeline in its use of color-constant images as described
in Section 2.1. The “Current Local Map” block is only used for keypoint tracking during the repeat pass.

then generates a grey image from the green channel, and, if color-constant image creation is enabled, the
two color constant images described in Section 2.1. A SURF keypoint detector (Bay et al., 2008) then
generates a set of keypoints in each processed image whose 3D coordinates are estimated using either stereo
triangulation or monocular depth estimation as discussed in Section 3. The system uses the grey keypoints
in both the teach pass (Section 2.4) and the repeat pass (Section 2.5) to compute frame-to-frame VO using
a combination of the three-point RANSAC algorithm (Fischler and Bolles, 1981) and the bundle adjustment
procedure outlined in Section 2.3, with keypoint correspondences established as described in Section 2.2.
Map-based localization in the repeat pass makes use of a similar procedure, but instead operates on both
the grey and color-constant images over a larger window of keyframes.

2.1 Color-Constant Image Transformations

We use the same color-constant image transformations as described by Paton et al. (2015a), which are derived
from the results of Ratnasingam and Collins (2010). By assuming that the environment contains a single
light source that is a perfect black-body radiator, and that the response of the imaging sensor is infinitely
narrow at the sensor’s peak wavelength, these results show that it is possible to compute images that are
resistant to shadows and changes in scene lighting. The use of such images has been shown to improve



Table 1: Parameters for generating color-constant images from a PointGrey Bumblebee XB3 stereo camera
(Paton et al., 2015a)

Parameter Description Value

αv Vegetation image (Fv) α weight 0.29
βv Vegetation image (Fv) β weight 0.71
αr Rock/sand image (Fr) α weight -1.3
βr Rock/sand image (Fr) β weight 2.3

(a) RGB image (b) Grey image (c) Vegetation image (Fv) (d) Rock/sand image (Fr)

Figure 2: Sample RGB image from the dataset described in Section 5, and the three corresponding processed
images (Paton et al., 2015a). Note that Figures 2c and 2d have been rescaled to enhance the contrast.

precision/recall performance on place recognition tasks (Corke et al., 2013), as well as stereo localization
quality in the presence of shadows and changing lighting conditions (McManus et al., 2014; Paton et al.,
2015a).

Color-constant images can be generated on a per-pixel basis by taking a weighted sum of the logarithms of
the sensor responses for three color channels (e.g., red, green, and blue):

F = log(R2)− α log(R1)− β log(R3), (1)

where Ri is the sensor response at peak wavelength λi, the weights (α, β) are subject to the constraints

1

λ2
=

α

λ1
+

β

λ3
and β = (1− α), (2)

and the indices i = 1, 2, 3 are chosen such that λ1 < λ2 < λ3. We refer the interested reader to Paton et al.
(2015a) for the full derivation of this result.

We generate a set of three images: a grey image from the green channel, and two color-constant images Fv
and Fr with weights trained on time-lapse stereo imagery of static outdoor scenes consisting of vegetation
and rocks/sand, respectively. Table 1 summarizes the parameters used to generate the two color-constant
images with a PointGrey XB3 stereo camera. We refer the interested reader to Paton et al. (2015a) for a
thorough discussion of the training procedure used to determine the weights. Figure 2 shows a sample RGB
image from the dataset described in Section 5, along with the three corresponding processed images.

2.2 Keypoint Detection and Matching

Given the grey (green channel) image and any color-constant images that were computed, a GPU implemen-
tation of the SURF detector (Bay et al., 2008) detects a set of 2D keypoints in the processed images, and
estimates their image-space covariances according to the image pyramid level at which they were detected.
In order to ensure an even distribution of keypoints across the image, we divide the image evenly into an
8× 6 grid and detect keypoints in each grid cell independently. The 3D coordinates and covariances of each
keypoint are subsequently estimated via stereo matching and triangulation in the stereo pipeline, or by the
depth estimation scheme described in Section 3 in the monocular pipeline.



For stereo matching, VO, and map-based localization, we compute correspondences between keypoints using
SURF descriptor matching and a goodness test, which is a helpful criterion for rejecting ambiguous keypoint
matches that are likely to be outliers. This procedure begins by ranking pairs of keypoints based on a scalar
distance score di,j computed from the normalized 64-element SURF descriptor vectors di and dj of reference
keypoint i and match candidate j, respectively:

di,j := 1− dTi dj . (3)

We decide whether to accept the top-ranked (i.e., smallest distance) keypoint pair as a positive match by
checking whether its distance score is at least a factor δg (i.e., the goodness ratio) smaller than the second-best
keypoint match:

di,1 < δgdi,2. (4)

In all three cases (stereo matching, VO, and map-based localization), we set δg = 0.9 since this value generally
produces good results in practice.

2.3 Bundle Adjustment

We use a common bundle adjustment procedure to compute both frame-to-frame visual odometry in the teach
and repeat passes, as well as to compute local metric maps from keyframes in the repeat pass. Given a set of
visual observations yk,j corresponding to an observation of keypoint j = 1, 2, . . . , J from pose k = 1, 2, . . . ,K
and the set of transformation matrices Tk,0 ∈ SE(3) corresponding to vehicle pose k expressed in the base
frame F−→0 of the bundle adjustment, we can define the per-observation reprojection error,

ek,j := yk,j − g
(

Tk,0,pj,00

)
, (5)

where pj,00 is a vector from the origin of F−→0 to keypoint j, expressed in F−→0 (i.e., the 3D position of keypoint

j expressed in the base frame), and g(·) is the sensor model.

The objective function we seek to minimize is then

O :=
1

2

K∑
k=1

J∑
j=1

eTk,jQ
−1
k,jek,j (6)

where Qk,j is the covariance of ek,j . We solve this minimization problem using an iterative Gauss-Newton
algorithm, taking special care with the handling of transformation matrices since SE(3) is not a vector
space. The details of this algorithm are beyond the scope of this paper, and we refer the interested reader
to Furgale (2011) for the full solution.

2.4 Teach Pass

During the teach pass, the system continually computes frame-to-frame visual odometry (VO) to estimate the
vehicle’s motion. Given a pair of frames and associated keypoints, the system searches for keypoint matches
based on SURF descriptors as described in Section 2.2. The set of matched keypoints then forms the input
to a 3-point RANSAC algorithm (Fischler and Bolles, 1981), which rejects outlying matches and estimates
the interframe vehicle motion. In our monocular VT&R system, this procedure typically rejects keypoints
far from the local ground surface (e.g., walls and trees) since their motion is not adequately captured by the
uncertainty model of Section 3.3. The inlying keypoint tracks and vehicle motion are then optimized using
a two-frame version of the bundle adjustment procedure described in Section 2.3.

In addition to computing VO, the system also constructs a pose graph whose vertices store keyframes
consisting of inlying 3D keypoints along with their covariances and SURF descriptors, and whose edges store
lists of matched keypoints and 6DOF pose change estimates as computed by VO. While only the grey image



is used to compute frame-to-frame VO, any keypoints associated with color-constant images in the lighting-
resistant pipeline are also stored as part of each keyframe. The system creates a new keyframe whenever
a user-specified threshold on vehicle translation or rotation since the last keyframe is exceeded. Once the
teach pass is complete, the pose graph serves as the map and reference path during the repeat pass.

2.5 Repeat Pass

The repeat pass begins with a manual initialization at some vertex in the pose graph, and the specification of
a destination vertex. The system then reconstructs the vehicle’s path from the appropriate chain of relative
transformations.

During the repeat pass, the system continually computes frame-to-frame VO and simultaneously attempts
to localize against the map built during the teach pass. Using the last successful localization result and
the frame-to-frame VO solution as an initial guess, the system selects the nearest (in the Euclidean sense)
keyframe to the current pose estimate as the active keyframe. The system then uses the bundle adjustment
technique of Section 2.3 to generate a metrically-consistent local map from a user-specified number of topo-
logically adjacent keyframes, with the active keyframe as the base frame. By projecting each 3D keypoint in
the local metric map into the active keyframe, the system produces an augmented keyframe against which
freshly detected keypoints may be matched. Note that the local metric map may also contain keypoints
associated with color-constant images.

Keypoints in the live image are matched against keypoints in the augmented keyframe, and if the number
of matches exceeds a user-specified threshold, localization is considered successful. If localization is not
successful, the system will rely purely on VO until it successfully localizes against the map, or until it
exceeds a user-specified distance threshold since the last successful localization against the map, in which
case the system will halt the traverse, entering a search mode until it relocalizes or the operator intervenes.
This behaviour prevents the system from drifting so far off the path that it will not be able to relocalize
without substantial manual intervention.

Based on the localization result (whether from VO or from the map), the system estimates the vehicle’s
3DOF pose relative to the projection of the reference path on the local ground plane. The error between
the estimated and desired vehicle pose forms the input to a learning-based nonlinear model-predictive path-
tracking controller (Ostafew et al., 2015) that uses a simple a priori vehicle model, a learned disturbance
model, and an experience-based speed scheduler to achieve high-performance path tracking in challenging
outdoor terrain. Since the focus of this paper is the localization component of VT&R, we do not discuss
the details of the controller here and instead refer the interested reader to Ostafew et al. (2015) for more
information. We note, however, that both our experiments and the experiments of Paton et al. (2015a) make
use of the most basic form of this controller (i.e., disturbance learning and speed-scheduling disabled) so
that the performance of the localization pipeline can be assessed independently of any effect it may have on
the controller’s experience.

3 Monocular Depth Estimation

We now describe the depth estimation scheme that we use to generate metric information from a monocular
camera observing the ground. By assuming that all keypoints of interest are on the ground and approximating
the local ground surface in the vicinity of the vehicle as a plane (with uncertainty), we can obtain approximate
local metric information with scale determined from the known position and orientation of the camera relative
to the ground. While this approximation is not globally valid, VT&R relies only on local metric information,
so this type of simplification is sufficient provided the ground surface is textured enough to generate good
keypoint matches.



3.1 Observation Model

Given pixel coordinates yk,j of keypoint j observed by the camera from pose k, we want to recover the 3D

coordinates pj,ckck
:=
[
xck yck zck

]T
of the keypoint, expressed in the camera frame F−→ck . In what follows,

we have dropped the k subscript for notational convenience since we are only considering one camera pose.

First, let us consider how image coordinates yj are formed from 3D coordinates pj,cc . Assuming that the
image has been de-warped and rectified in a pre-processing step, we can use an ideal pinhole camera model
with focal lengths fu and fv, principal point (cu, cv), and camera matrix

K =

fu 0 cu
0 fv cv
0 0 1


to define the observation model g(·):

yj = g
(
pj,cc
)

= h−1
(

K
1

zc
pj,cc

)
, (7)

where h(·) is the function that converts Cartesian coordinates of any dimension to their equivalent homoge-
neous coordinates. Note that the projective division by zc effectively transforms pj,cc from a 3D Cartesian
point to a 2D homogeneous point.

Unless the keypoint depth zc is known, the function g(·) is not uniquely invertible due to the loss of in-
formation through the projective division by zc. In general, recovering zc requires either multiple views of
keypoint j, or assumptions about the shape of the scene. In our system, we choose to make simple as-
sumptions about the scene in order to avoid issues with scale ambiguity and keypoint re-observation that
accompany multi-view monocular reconstruction.

3.2 Locally Planar Ground Surfaces

Provided that the monocular camera is observing the ground, we can estimate the 3D coordinates of keypoints
near the ground by approximating the ground surface around the vehicle as a plane. While this assumption
is certainly not valid over the entirety of most routes, VT&R relies on metric information only locally, so a
local approximation to the true terrain shape is sufficient.

In addition to the camera-centric coordinate frame F−→c, we define two additional coordinate frames, which
are graphically depicted in Figure 3a:

F−→g – a local ground coordinate frame attached to the vehicle, which, for a ground vehicle, is defined
such that its xy-plane contains the vehicle’s footprint; and

F−→v – the vehicle body coordinate frame.

We then make the following assumptions about the geometry of the scene and the vehicle:

1. all keypoints lie in the xy-plane of F−→g (i.e., zg = 0);

2. the transformation Tc,v ∈ SE(3) from F−→v to F−→c is known; and

3. the transformation Tv,g ∈ SE(3) from F−→g to F−→v is known.
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Figure 3: Geometry and uncertainty model of our monocular depth estimation scheme.

With these assumptions in mind, we can re-express our observation model as

yj = g
(
pj,gg ,Tc,v,Tv,g

)
= h−1

K
1

zc
h−1

(
Tc,vTv,gh(pj,gg )

)︸ ︷︷ ︸
pj,c
c

 (8)

where pj,gg :=
[
xg yg 0

]T
is the 3D coordinate of keypoint j in the local ground frame. We can rearrange

(8) so that the inverse observation model g−1(·) is given by

pj,cc = g−1 (yj ,Tc,v,Tv,g) = zcK−1h(yj), (9)

where
zcK−1h(yj) = Tc,vTv,gh(pj,gg ) (10)

is a system of three equations in three unknowns (xg, yg, and zc). Defining the (unitless) normalized image

plane coordinates
[
nx ny 1

]T
:= K−1h(yj) and solving the third component of (10) for zc yields

zc =
k1

k2 + k3nx + k4ny
, (11)

where, using Tm,n as shorthand for the mth row and nth column of the transformation matrix Tc,g = Tc,vTv,g,

k1 = T1,1 (T2,2T3,4 − T2,4T3,2) k2 = T1,1T2,2 − T1,2T2,1
+ T1,2 (T2,4T3,1 − T2,1T3,4) k3 = T2,1T3,2 − T2,2T3,1
+ T1,4 (T2,1T3,2 − T2,2T3,1) k4 = T1,2T3,1 − T1,1T3,2 .

Estimating keypoint depths in this way is useful for several reasons. First, it provides approximate local
metric information without requiring multiple views with large disparity, which can be difficult to obtain
on a forward-moving vehicle with a front-facing camera. Second, it resolves the scale ambiguity that makes
monocular SLAM systems difficult to use for control and outlier rejection. Third, solving for keypoint
depths via a chain of relative transformations provides a principled way to model the uncertainty in keypoint
positions, namely as a function of the uncertainty on each transformation matrix in the chain as we show in
Section 3.3. Finally, the definition of the local ground frame F−→g allows this method to be straightforwardly
extended to aerial vehicles with a downward-facing camera by estimating the transformation Tv,g using, for
example, an onboard altimeter and orientation sensor.



3.3 Uncertainty Modelling

Although the local planarity assumption is a useful starting point for monocular VT&R, its rather obvious
disadvantage is that it is frequently violated, especially in outdoor environments. We therefore require
an appropriate model of the uncertainty in each keypoint observation pj,cc that accounts for deviations in
ground shape. We model keypoint uncertainty by considering two important factors: uncertainty in image
coordinates yj , and uncertainty in ground shape. In early experiments, we found that image coordinate
uncertainty alone did not permit reliable keypoint tracking due to the large Mahalanobis distance between
3D keypoint estimates across multiple frames.

We model keypoint coordinates in image space as Gaussian distributions centred on yj with covariance
Ryj := diag{σ2

uj
, σ2
vj}. We use SURF keypoints (Bay et al., 2008) in our system and determine σuj and

σvj from the image pyramid level at which each keypoint is detected. To incorporate uncertainty in ground
shape far from the vehicle, we represent the ground-to-vehicle transformation as a Gaussian distribution
on SE(3) with mean Tv,g and covariance RTv,g

:= diag{σ2
1 , σ

2
2 , σ

2
3 , σ

2
4 , σ

2
5 , σ

2
6}, where σ1 . . . σ6 are tunable

parameters corresponding to the six generators of SE(3). Together these factors form an 8-dimensional
Gaussian distribution with covariance Rj := diag{Ryj ,RTv,g}, which we propagate via the combined Jacobian

Gj :=

[
∂g−1 (yj ,Tc,v,Tv,g)

∂yj

∣∣∣
yj ,Tc,v,Tv,g

∂g−1 (yj ,Tc,v,Tv,g)
∂Tv,g

∣∣∣
yj ,Tc,v,Tv,g

]
to approximate pj,cc as a Gaussian distribution in 3D space with covariance Qj = GjRjGT

j .

The individual Jacobians are given by

∂g−1 (yj ,Tc,v,Tv,g)
∂yj

=
zc
k1

(k1 + k3xc) /fu k4xc/fv

k3yc/fu (k1 + k4yc) /fv

k3zc/fu k4zc/fv

 (12)

and

∂g−1 (yj ,Tc,v,Tv,g)
∂Tv,g

=
∂g−1 (yj ,Tc,v,Tv,g)

∂Tc,g
∂Tc,g
∂Tv,g

=
[
1 (−pj,cc )∧

]
Ad(Tc,v) (13)

where, adopting the notation of Barfoot and Furgale (2014), 1 denotes the (3 × 3) identity matrix, Ad(·)
denotes the adjoint in SE(3), and

p∧ =

 0 −p3 p2
p3 0 −p1
−p2 p1 0

 .
Figure 3b shows 1σ uncertainty ellipses for a number of evenly spaced synthetic keypoints resulting from a
camera configuration similar to that used in the experiments described in Section 4. Note that we could also
incorporate uncertainty in the vehicle-to-camera transformation Tc,v in this calculation, but we found that
this was of limited use since ground shape uncertainty was the dominant contributor to keypoint uncertainty
in our experiments.

4 UTIAS Experiments

We conducted two sets of experiments at the University of Toronto Institute for Aerospace Studies (UTIAS).
The first took place outdoors on relatively flat terrain, and the second on the highly non-planar terrain of the
UTIAS MarsDome indoor rover testing environment. Using grey images only, we compare the performance



Table 2: Summary of results for UTIAS experiments

Local start time (UTC-4) Autonomy rate [%]

Trial Route Length [m] vmax [m/s] Teach Mono Stereo Mono Stereo

1 Outdoor 1370 0.6 09:56 10:35 12:08 99.71† 100.00
2 Outdoor 1360 0.6 11:45 12:22 13:43 99.88 100.00
3 Outdoor 1361 0.6 13:26 14:00 15:20 99.74 100.00
4 Indoor 126 0.3 13:32 13:40 14:02 96.28 100.00
5 Indoor 140 0.3 12:18 12:32 12:59 91.60 100.00

Absolute lateral error – µ (σ) [cm] VO matches – µ (σ) Map matches – µ (σ)

Trial Mono Stereo Mono Stereo Mono Stereo

1 1.5 (3.0) 0.68 (0.91) 260 (82) 210 (42) 150 (110) 120 (48)
2 0.19 (7.1)‡ 0.54 (5.6)‡ 190 (70) 190 (40) 180 (90) 86 (43)
3 0.82 (1.2) 1.4 (2.3) 210 (61) 220 (37) 240 (92) 121 (47)
4 0.65 (0.83) 0.61 (0.76) 300 (76) 250 (41) 110 (99) 89 (44)
5 0.55 (0.57) 0.57 (0.65) 310 (94) 360 (57) 160 (115) 140 (50)

Mono Stereo

Total distance driven 4298 m† 4357 m
Total distance autonomously traversed 99.41% 100.00%

† During the monocular repeat pass of Trial 1, a parked vehicle in a no-parking zone on the path forced
manual driving for 59 m before successful relocalization. We exclude this segment in our analysis and
report the monocular autonomy rate for Trial 1 based on a reduced path length of 1311 m.
‡ RTK correction of our GPS data failed during the teach pass of Trial 2, so ground truth lateral path

tracking error could not be computed reliably. We report the lateral path tracking error estimated by
the localization pipeline as an approximation to the true value, although it tends to over-estimate these
errors, leading to a larger spread in errors than we see in the ground truth data.

of our monocular VT&R system to that of the legacy stereo system (Furgale and Barfoot, 2010) over 4.3 km
of autonomous navigation. We compare the two systems based on path-tracking accuracy as well as the
autonomy rate of each traverse, which we define to be the proportion of the path, by distance, that the
system drove autonomously, whether on pure VO or by localizing against the map. Table 2 reports path
lengths, maximum repeat speeds (vmax), start times, and autonomy rates for each experiment along with the
mean and standard deviation of the lateral path tracking errors (from ground truth), VO keypoint matches,
and map keypoint matches for each repeat pass.

4.1 Hardware

As depicted in Figure 4, our robotic platform for these experiments consisted of a four-wheeled skid-steered
Clearpath Husky A200 rover equipped with a PointGrey Bumblebee XB3 stereo camera outputting 512×384
pixel grey images at 15 frames per second over a FireWire connection. A MacBook Pro 10,1 laptop running
Linux and ROS (Quigley et al., 2009) interfaces with the vehicle and the stereo camera, and handles the
VT&R algorithms as well as any additional payload drivers (e.g., GPS).

The camera is positioned 1.0 m above the base of the vehicle and is angled downward at 47◦ to the horizontal.
These values were measured by hand since we do not require a precise estimate of the vehicle-to-camera
transform Tc,v; uncertainty in the ground-to-vehicle transform Tv,g is the dominant source of uncertainty in
our system.
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Figure 4: Our robotic platform for the UTIAS experiments was a Clearpath Husky A200 rover equipped with
a PointGrey Bumblebee XB3 stereo camera, DGPS receiver, Leica Nova MS50 MultiStation prism, and a 1
kW gas generator. A MacBook Pro 10,1 laptop running Linux and ROS (Quigley et al., 2009) interfaces with
the vehicle and the stereo camera, and handles the VT&R algorithms and any additional payload drivers.

4.2 Procedure

Because the intent of our experiments was to compare the accuracy and robustness of grey-only monocular
and stereo VT&R in similar conditions, our experimental procedure consisted of recording stereo images
during a manually-driven teach pass, and using the recorded images to teach identical routes using both the
monocular and stereo pipelines. We conducted each experiment between roughly 10:00 and 14:00 when the
sun was highest in the sky to minimize the effects of lighting changes and shadows. For each experiment,
we repeated the route using the monocular pipeline first, using imagery from the left camera of the stereo
pair only since the stereo camera coordinate frame has its origin in the left camera.

4.3 Parameter Selection and Sensitivity

Table 3 lists the important parameters used for both pipelines in these experiments. We manually tuned these
parameters on separate small-scale training runs until the system achieved the desired level of performance.
While a quantitative sensitivity analysis with respect to each of these parameters is infeasible, a qualitative
discussion may still be valuable to researchers developing similar systems.

One of the key tradeoffs in tuning these parameters is the balance between the quantity of information
available for localization and the time required to compute an accurate localization result. In particular, the
number of keypoints detected and tracked, Nk, and the number of RANSAC iterations, Nr, are important
considerations. With too few keypoints being inserted into the map, repeat pass localization performance
declines sharply since fewer keypoints can be matched against the map. On the other hand, too many
keypoints in the map results in a bundle adjustment optimization that is too slow to converge to be used
for online operation. Moreover, the number of RANSAC iterations must be large enough to reliably reject



Table 3: Parameters for UTIAS experiments

Parameter Description Value

Nk SURF keypoints detected and tracked 600
Nr RANSAC iterations 400
Nm Minimum match count for localization 10
τ Maximum distance without localizing against the map 10 m
K Bundle adjustment window size (keyframes) 11
δr Keyframe creation threshold (translation) 25 cm
δθ Keyframe creation threshold (rotation) 2.5◦

σ1, σ2, σ3 Ground-to-vehicle translation standard deviation† 10 cm
σ4, σ5, σ6 Ground-to-vehicle rotation standard deviation† 10◦

vmax Maximum repeat speed during data collection See Table 2.

† These parameters were used in the monocular pipeline only.

the majority of outlier keypoint matches, and the computational effort expended per iteration scales linearly
with the number of keypoint matches to evaluate.

The choice of bundle adjustment window size, K, compounds this issue, since a reasonable number of keypoint
reobservations is required to obtain a good estimate of 3D keypoint positions. This is especially important to
the monocular pipeline since the initial estimates of keypoint positions are more uncertain and less accurate
than in the stereo pipeline. The ideal window size depends partly on keyframe creation thresholds, δr and
δθ, since many features are reobserved over only a few meters before going out of view, and over an even
shorter distance when the vehicle is turning. We tuned these parameters somewhat conservatively in order
to ensure a good number of observations per keypoint.

The minimum match count for localization, Nm and the maximum distance without localizing against the
map, τ , are important for ensuring reliable localization against the map and for preventing the vehicle
from driving too far off the path due to accumulated drift in the VO estimate if map-based localization fails.
While, theoretically, only three inlier keypoint matches are required to uniquely determine the vehicle’s pose,
in practice we require a larger number of matches to account for the fact that RANSAC is not guaranteed
to identify a true set of inliers. Since grossly incorrect localization results ultimately lead to nonsensical
control inputs and unpredictable vehicle behaviour, we tuned Nm rather conservatively. At the same time,
we wished to prevent the vehicle from drifting so far off the path in cases of localization failure that it would
be unable to relocalize without substantial manual intervention. We therefore required the vehicle to stop
and enter a search mode after 10 meters, since we observed the likelihood of localization recovery to be very
low beyond that point.

Finally, the parameters σ1...6 in the monocular pipeline, corresponding to the uncertainty in each of the
six degrees of freedom in the ground-to-vehicle transformation, were tuned in response to the expected
roughness of the terrain to be traversed. In contrast to a naively exploring vehicle that would need to learn
these parameters online, we know the roughness of the terrain a priori since the route is taught by a human.
For very flat surfaces, these parameters can be set quite low, perhaps to a tenth of their reported values,
but for rougher terrain with more deviations from the local planarity assumption, they must be increased to
account for the scene geometry. On the other hand, setting them much higher than the reported values can
increase the difficulty of keypoint matching, especially in cases where the keypoints have similar descriptors
and can only be distinguished in terms of their spatial location.

4.4 Outdoor Experiments

We evaluated the performance of our monocular VT&R system over three 1.4 km routes through the parking
lots and driveways of UTIAS. These paths consisted mainly of flat pavement, but they also included several



Figure 5: Comparison of RTK-corrected GPS tracks of the teach pass, stereo repeat pass, and monocular
repeat pass of a 1.4 km outdoor route at the University of Toronto Institute for Aerospace Studies (Trial 3
in Table 2). The zoomed-in section highlights the centimeter-level accuracy of both pipelines. (Map data:
Google, DigitalGlobe.)
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(a) Monocular repeat pass
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(b) Stereo repeat pass

Figure 6: Estimated and measured lateral path-tracking error during the monocular and stereo repeat passes
of the 1.4 km outdoor route shown in Figure 5 (Trial 3 in Table 2). GPS tracking shows that both monocular
and stereo VT&R achieve centimeter-level accuracy, although estimated lateral path-tracking error (blue and
red lines) tends to diverge from the true value (green lines) in cases of localization failure due to accumulated
error in the VO estimate.

non-planar features such as speed bumps, side slopes, deep puddles, and rough shoulders, as well as a variety
of other terrain types including gravel, sand, and grass.

We established ground truth for each teach pass and each repeat pass by equipping the rover with an Ashtech
DG14 Differential GPS unit used in tandem with a second stationary DG14 unit to obtain centimeter-
accuracy RTK-corrected GPS data. Figure 5 shows GPS tracks and satellite imagery of the teach and
repeat passes for one of these routes.

Figure 6 shows estimated lateral path-tracking errors during the monocular and stereo repeat passes, as
well as the lateral path-tracking error measured from RTK-GPS ground truth. Both pipelines achieved
centimeter-level accuracy in their respective repeat passes and produced similar estimates of lateral path-
tracking error when successfully localized against the map. In cases of map localization failure (i.e., when
the system relied on pure frame-to-frame VO), the monocular pipeline’s estimated lateral path-tracking error
diverged from ground truth more quickly than that of the stereo pipeline. This means that the interframe pose
estimates from monocular VO were more error-prone, which in turn led to the dead-reckoned motion estimate
accumulating drift error more rapidly. This behaviour is a result of the comparatively large uncertainties
associated with keypoints in the monocular pipeline. Since keypoint positions are poorly constrained by
only two measurements, the two-frame bundle adjustment is less likely to converge to an accurate solution
in the monocular pipeline than in the stereo pipeline. Note, however, that the ground truth lateral path
tracking error (the green lines in Figure 6) has 3σ bounds of 3.6 cm for the monocular pipeline and 6.9 cm
for the stereo pipeline, indicating that both systems stayed well within 10 cm of the taught path for the vast
majority of the traverse (see Table 2).

Figure 7 compares the number of successful keypoint matches for frame-to-frame VO and map-based local-
ization for monocular and stereo VT&R. Both pipelines track similar numbers of keypoints from frame to
frame, but as shown in Table 2, the monocular pipeline generally tracks twice as many map keypoints as
its stereo counterpart and the spread of map match counts is much wider. This behaviour is most likely
due to a combination of two factors: keypoint rejection during the stereo matching and triangulation step
(from which the monocular pipeline is necessarily exempt); and incorrect data association during local map
construction in the monocular pipeline, which is a result of the comparatively large positional uncertainties
of distant keypoints.
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Figure 7: Keypoint matches during the monocular and stereo repeat passes of the 1.4 km outdoor route
shown in Figure 5 (Trial 3 in Table 2), with localization failures highlighted. A localization failure is defined
as fewer than 10 keypoint matches. There were no VO failures during either repeat pass. For clarity, we
have applied a 20-point sliding-window mean filter to the raw data.

4.5 MarsDome Experiments

We also conducted similar experiments in the UTIAS MarsDome indoor rover testing facility, a 1,100 m2

fully enclosed testing facility whose interior has been modified using various materials to create hills, valleys,
and other obstacles (Figure 8). Although these routes were only one-tenth of the length of the outdoor
routes, they covered substantially more difficult terrain.

Since the MarsDome is an enclosed facility, GPS tracking is not available and we instead made use of a
Leica Nova MS50 MultiStation to track the position of the rover with millimeter-scale accuracy. Figure 9
shows MultiStation tracks of the teach pass and the two repeat passes of one MarsDome route. Figure 9
also highlights several highly non-planar features along the route such as side slopes, large bumps, valleys,
ramps, and hills.

In spite of the difficulty of the terrain and clear violations of the planarity assumption, even locally, Figure 10
shows that both monocular and stereo VT&R achieved centimeter-level lateral path-tracking error. Again,
note that although the monocular pipeline’s estimated lateral path-tracking error diverged significantly from
ground-truth during localization failures, the MultiStation tracks show that the vehicle remained within a
few centimeters of the taught path throughout the traverse. Indeed, Table 2 shows that the 3σ bounds on
the ground truth lateral path tracking error (the green lines in Figure 10) are 1.7 cm for the monocular
pipeline and 2.0 cm for the stereo pipeline.

Figure 11 shows VO and map keypoint matches for both repeat passes. The monocular pipeline suffered map
localization failures more frequently than the stereo pipeline, with the worst failures occurring in the valley
and hill regions (see Figure 9) where the lighting was especially poor. Poor lighting led to increased motion
blur (see Figure 12b) and unreliable keypoint matching, which was more problematic for the monocular
pipeline due to greater uncertainty in keypoint positions compared to the stereo pipeline. Both failures
necessitated manual intervention over a few meters, but the system successfully relocalized once the lighting
improved. Similarly to the outdoor experiments, Table 2 shows that the monocular pipeline tracked more
keypoints than the stereo pipeline on average, but also had much more variable tracking performance.



Figure 8: The UTIAS MarsDome is a 1,100 m2 fully enclosed testing facility whose interior has been modified
using various materials to create hills, valleys, and other obstacles.
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Figure 9: Comparison of MultiStation tracks of the teach pass, stereo repeat pass, and monocular repeat
pass of a 140 m MarsDome route (Trial 5 in Table 2), with some interesting segments highlighted.
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(a) Monocular repeat pass

Distance travelled [m]
0 50 100

L
a

te
ra

l 
p

a
th

-t
ra

c
k
in

g
 e

rr
o

r 
[m

]

-0.5

0

0.5

1
Localization failure (VO or map)
Estimated (Stereo)
Ground truth (Multistation)

(b) Stereo repeat pass

Figure 10: Estimated and measured lateral path-tracking error during the monocular and stereo repeat
passes of the 140 m indoor route shown in Figure 9 (Trial 5 in Table 2). MultiStation tracking shows that
both monocular and stereo VT&R achieve centimeter-level accuracy in highly non-planar terrain, although
estimated lateral path-tracking error (blue and red lines) tends to diverge from the true value (green lines)
in cases of localization failure due to accumulated error in the VO estimate. Note the difference in scale
between the two plots.

Distance travelled [m]
0 50 100

V
O

 k
e

y
p

o
in

t 
m

a
tc

h
e

s

100

200

300

400

500

600

700

800
Monocular VO failure
Stereo VO failure
Monocular VO matches
Stereo VO matches

(a) VO keypoint matches
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(b) Map keypoint matches

Figure 11: Keypoint matches during the monocular and stereo repeat passes of the 140 m indoor route
shown in Figure 9 (Trial 5 in Table 2), with localization failures highlighted. A localization failure is defined
as less than 10 keypoint matches. There were no VO failures during either repeat pass. For clarity, we have
applied a 5-point sliding-window mean filter to the raw data.



(a) Self-similar terrain (b) Motion blur

Figure 12: The most common causes of localization failure in these experiments were highly self-similar
terrain and motion blur. Neither stereo nor monocular VT&R is immune to these conditions, but their
effects were exacerbated by high spatial uncertainty in the monocular case.

4.6 Limitations

Localization failure in the monocular pipeline was chiefly due to difficulty in finding good keypoint matches
between the map and the live image, especially in regions of highly self-similar terrain (e.g., Figure 12a)
and in poorly-lit regions where motion blur is noticeable (e.g., Figure 12b). While the stereo pipeline
is not immune to these effects, it is more resistant to them than the monocular pipeline since keypoint
uncertainties are much larger in the monocular pipeline. With fewer correctly associated measurements,
the bundle adjustment procedure will not maximally constrain keypoint positions, reducing the reliability of
the map and increasing the risk of localization failures. Indeed, Figures 7 and 11 show that the monocular
pipeline suffered more serious map localization failures than the stereo pipeline, although these were not
often severe enough to force manual intervention.

5 CSA Dataset Experiments

While the experiments presented in Section 4 demonstrated that, when operating nominally, our monocular
VT&R system can achieve route-repetition accuracy on par with its stereo counterpart using only standard
grey images, we also saw that the monocular pipeline was more sensitive to lighting and self-similar textures
and had a higher incidence of localization failure. In this section we examine the use of color-constant images
(Paton et al., 2015a) to improve the monocular pipeline’s robustness to lighting changes. We compare this
lighting-resistant monocular pipeline to the equivalent stereo system presented by Paton et al. (2015a)
through offline testing on an additional 26 km of autonomous navigation data collected at the Canadian
Space Agency (CSA) Mars Emulation Terrain facility. As shown in Figure 13, this dataset consists of a
1.04 km route covering a variety of terrain types including rocks, sand, grass, gravel, and wooded areas. The
route was taught in sunny conditions, and successfully repeated 25 times from sunrise to sunset over the
course of four days in both sunny and cloudy conditions (Table 4).

5.1 Hardware

The robotic platform in this dataset is a Clearpath Grizzly Robotic Utility Vehicle (RUV). Like the Clearpath
Husky rover described in Section 4, the Grizzly RUV is equipped with a PointGrey Bumblebee XB3 stereo
camera, GPS receiver, and gas generator, as well as a suite of additional sensors that were not used in these



Table 4: Summary of CSA dataset traverses †

Traverse Day Local start time (UTC-4) Lighting

Teach 1 10:50 Sunny
Repeat 1 1 11:40 Sunny
Repeat 2 1 12:53 Sunny
Repeat 3 1 13:35 Sunny
Repeat 4 1 14:00 Sunny
Repeat 5 1 16:06 Sunny
Repeat 6 1 17:27 Sunny
Repeat 7 1 18:14 Sunny
Repeat 9 1 19:29 Sunny
Repeat 10 1 20:06 Sunset
Repeat 11 2 06:20 Cloudy
Repeat 12 2 07:05 Cloudy
Repeat 13 2 08:00 Cloudy
Repeat 14 2 09:00 Cloudy
Repeat 15 2 10:00 Cloudy
Repeat 16 2 11:00 Cloudy
Repeat 17 2 12:00 Cloudy
Repeat 18 2 13:00 Cloudy
Repeat 19 2 14:00 Cloudy
Repeat 20 2 15:10 Cloudy
Repeat 21 2 16:00 Cloudy
Repeat 22 2 17:00 Cloudy
Repeat 23 2 18:00 Cloudy
Repeat 24 2 19:00 Cloudy
Repeat 25 2 20:00 Cloudy
Repeat 27 4 08:50 Sunny

† Repeat passes 8 and 26 have been omitted due to data
loss and repeat pass failure during data collection, re-
spectively.
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Figure 13: GPS tracks (not RTK-corrected) of the 1.04 km teach route at the Canadian Space Agency Mars
Emulation Terrain facility and surrounding area. The route covers a variety of terrain types including rocks,
sand, grass, gravel, and wooded areas. (Map data: Google, DigitalGlobe.)

experiments. An embedded Linux computer running ROS (Quigley et al., 2009) handles motor control and
safety features, while a Lenovo W540 laptop also running Linux and ROS handles the VT&R algorithms
and interfaces with the onboard computer and the stereo camera.

The camera on the Grizzly RUV is mounted 1.5 meters above the ground and is angled downwards at 29◦

to the horizontal, significantly higher and at a much shallower angle than on the Husky rover. As with the
UTIAS experiments, these values were measured by hand.

5.2 Procedure

Since we are performing an offline analysis of teach and repeat pass data originally collected using a vehicle
controlled by the lighting-resistant stereo pipeline, it is impossible to compare path tracking accuracy for
the monocular and stereo pipelines as we did in Section 4. Instead, we choose to compare localization
quality across pipelines in terms of the distribution of localization failures over each traverse. We discuss
this comparison in more detail in Section 5.4.

We generated the data for these experiments by first training the monocular pipeline on the teach pass data
using color-constant images as described in Section 2.1, then testing the pipeline on each of the repeat pass
datasets. We recorded the number of keypoint matches for the grey image and each of the two color-constant
images, as well as the distances driven on VO in each repeat pass. We then repeated this procedure using
the grey-only monocular pipeline, as well as both the lighting-resistant and grey-only versions of the stereo
pipeline.
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Figure 14: The robotic platform for the CSA experiments was a Clearpath Grizzly Robotic Utility Vehicle
(RUV) equipped with, among other things, a PointGrey Bumblebee XB3 stereo camera, DGPS receiver, and
gas generator. An embedded Linux computer running ROS (Quigley et al., 2009) handles motor control and
safety features, while a Lenovo W540 laptop handles the VT&R algorithms and interfaces with the onboard
computer and the stereo camera.



Table 5: Parameters for CSA dataset experiments‡

Parameter Description Value

Nk SURF keypoints detected and tracked 600
Nr RANSAC iterations 400
Nm Minimum match count for localization 10
τ Maximum distance without localizing against the map 10 m
K Bundle adjustment window size 11
δr Keyframe creation threshold (translation) 20 cm
δθ Keyframe creation threshold (rotation) 2.5◦

σ1, σ2, σ3 Ground-to-vehicle translation standard deviation† 5 cm
σ4, σ5, σ6 Ground-to-vehicle rotation standard deviation† 10◦

vmax Maximum repeat speed during data collection 1.0 m/s

† These parameters were used in the monocular pipeline only.
‡ These are not precisely the parameters used by Paton et al. (2015a) during

dataset collection. We selected these parameters for our own experiments to be
consistent with the experiments of Section 4, with small empirically determined
adjustments to improve localization performance on the dataset.z

5.3 Parameter Selection and Sensitivity

Table 5 lists the important parameters used for both pipelines in these experiments. These parameter
values were chosen to be consistent with the experiments of Section 4, with small empirically determined
adjustments to improve localization performance on the dataset. These adjustments were necessary mainly
due to differences in camera placement on the vehicle, which had an impact on the reliability of the monocular
pipeline’s repeat pass localization performance. The comments of Section 4.3 pertaining to parameter tuning
and the system’s sensitivity to these parameters are relevant here as well.

5.4 Comparison of Localization Quality

We evaluate the quality of repeat-pass localization by examining the cumulative distribution function (CDF)
of the distances over which map-based localization failed and the system drove on pure VO. This is a useful
tool for assessing repeat-pass quality because it takes into account the statistical distribution of localization
failures, and provides a means of predicting whether and to what extent a particular localization pipeline
would have failed on a particular dataset with a particular set of parameters.

A VO CDF plot reads “for Y% of the traverse, the system drove less than X meters on VO”. Intuitively, a
system for which the distribution of distances driven on VO is skewed towards small (or zero) values performs
better than a system for which the distribution is skewed towards larger values. This is equivalent to saying
that the first system successfully localized against the map for a larger proportion of the route than the
second system. An ideal repeat pass is one in which the system localized against the map 100% of the time
(i.e., the distance travelled on VO is zero), so the closer the CDF is to the top-left of the plot, the better
the performance of the repeat pass.

One important use of the VO CDF is to assess whether, for a given maximum distance since localizing against
the map (parameter τ in Table 5), a particular repeat pass would have required manual intervention if the
vehicle had been driving autonomously under the same conditions. Equivalently, we can use the VO CDF
to predict whether the system would have achieved an autonomy rate of less than 100% on the repeat pass
in question. This allows us to easily compare different localization pipelines on the same dataset without
directly comparing repeat pass autonomy rates as we did in the experiments of Section 4. It also provides a
means of identifying the smallest manual intervention threshold that would allow for perfect or near-perfect
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(a) Monocular (grey + color-constant images)
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(b) Stereo (grey + color-constant images)
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(c) Monocular (grey image only)
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(d) Stereo (grey image only)

Figure 15: CDF of the distance over which the system had to localize using VO for repeat passes occurring 1
hour (Repeat 1), 3 hours (Repeat 4), and 7.5 hours (Repeat 7) after the teach pass, both with and without
color-constant imagery as described in Section 2.1. The plots read, “for Y% of the traverse, the system
drove less than X meters on VO”. CDFs closer to the top-left corner indicate better localization performance
during the repeat pass. In our experiments, we consider localization to have failed and manual intervention
to be required if the system relies on pure VO for more than 10 meters.

autonomy during the repeat pass, although this goal must be weighed against the likelihood of excessive VO
drift as discussed in Section 4.3.

Figure 15 shows the VO CDF plots for three reconstructed repeat passes from the CSA dataset, conducted
1 hour, 3 hours, and 7.5 hours after the teach pass, using both the stereo and monocular versions of the
legacy and lighting-resistant pipelines. As reported by Paton et al. (2015a), the stereo pipeline enjoys
significant gains in robustness by using color-constant images in addition to the standard grey image (compare
Figures 15b and 15d). This benefit is especially apparent for repeat passes 4 and 7, conducted 3 hours and 7.5
hours after the teach pass, respectively. For both of these repeat passes, the system traversed substantially
more of the route while successfully localizing against the map than it would have using grey images only.
For repeat pass 7, the use of color-constant images was actually sufficient to prevent the manual intervention
that would have been required using grey images only.

The results for the monocular pipeline are perhaps even more striking. While Figure 15c shows that the
legacy monocular pipeline would have performed much worse than the stereo pipeline and would have required
manual intervention even on repeat pass 1 (1 hour after the teach pass), Figure 15a shows that the addition



Table 6: Comparison of lighting-resistant monocular and stereo VO CDFs at selected distances

CDF (0.01 m) [%] CDF (0.1 m) [%] CDF (1 m) [%] CDF (10 m) [%]†

Repeat Mono Stereo Mono Stereo Mono Stereo Mono Stereo

1 93.91 99.62 96.66 99.87 99.37 100.00 99.91 100.00
2 84.49 95.94 90.75 98.91 98.05 100.00 100.00 100.00
3 53.62 87.89 66.80 95.93 92.57 99.97 99.85 100.00
4 42.55 76.15 58.06 89.98 89.43 99.86 99.93 100.00
5 43.12 63.32 59.32 80.86 90.38 99.30 99.65 100.00
6 31.58 38.10 53.05 62.25 89.08 96.34 99.69 99.68
7 30.79 38.70 51.19 63.94 88.36 95.54 99.31 99.78
9 49.89 64.61 64.38 82.36 93.43 99.54 99.88 99.98
10 45.34 55.79 63.20 75.26 91.80 98.71 100.00 99.98
11 52.18 80.40 66.27 92.63 92.83 99.93 99.88 100.00
12 51.04 79.74 66.06 92.14 93.03 99.85 99.79 100.00
13 52.50 86.04 65.80 95.23 91.05 99.92 99.91 100.00
14 45.97 79.49 61.00 91.99 91.67 99.88 99.93 100.00
15 59.17 84.00 70.47 93.85 93.84 99.92 100.00 100.00
16 49.08 85.86 61.93 94.43 92.05 99.94 100.00 100.00
17 56.96 82.79 70.19 93.15 93.81 99.94 99.88 100.00
18 57.98 84.56 70.86 94.11 95.46 99.85 100.00 100.00
19 54.88 78.04 68.13 91.69 94.29 99.89 100.00 100.00
20 50.46 75.36 65.09 89.23 93.71 99.86 100.00 100.00
21 53.37 75.90 67.96 90.20 93.88 99.82 100.00 99.99
22 43.99 55.28 58.92 76.00 92.12 98.83 100.00 100.00
23 55.18 77.56 69.46 90.52 94.54 99.81 99.94 100.00
24 51.35 66.74 66.43 83.63 93.92 99.45 100.00 100.00
25 51.53 61.60 67.67 80.84 94.18 99.07 100.00 100.00
27 37.05 55.53 55.37 76.02 91.41 97.53 99.94 99.89

Mean 51.92 73.16 66.20 87.00 92.97 99.31 99.90 99.97
Stdev. 13.49 15.81 9.89 10.04 2.49 1.17 0.16 0.08

† These are the expected autonomy rates given the parameters we used in our experiments (see
Table 5).

of color-constant imagery improves localization quality to the extent that repeat pass 1 could have been
traversed nearly as reliably as with stereo. This improvement is less pronounced for repeat passes 4 and 7,
but is still sufficient to avoid manual intervention on repeat pass 4, and to nearly avoid manual intervention
on repeat pass 7.

Table 6 summarizes the VO CDFs for all 25 repeat passes using both the monocular and stereo lighting-
resistant pipelines. We compare the localization performance of the two pipelines by reporting the value of
the VO CDFs (in percent) at several representative distance scales. This comparison gives an idea of the
expected autonomy rate of each system if it were prevented from travelling more than the reported distance
without localizing against the map. From the table we can see that the expected autonomy rates of the
lighting-resistant stereo pipeline are generally higher than those of the lighting-resistant monocular pipeline,
although with the threshold we used in all of our experiments (10 m), we would expect to see similar levels
of autonomy from both systems.
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Figure 16: Keypoint match counts for Repeat 1 (1 hour after teach pass) for the grey image and the two
color-constant images. For clarity, we have applied a 200-point sliding-window mean filter to the raw data.
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Figure 17: Keypoint match counts for Repeat 4 (3 hours after teach pass) for the grey image and the two
color-constant images. For clarity, we have applied a 200-point sliding-window mean filter to the raw data.
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Figure 18: Keypoint match counts for Repeat 7 (7.5 hours after teach pass) for the grey image and the two
color-constant images. For clarity, we have applied a 200-point sliding-window mean filter to the raw data.



Table 7: Map keypoint match count statistics for each lighting-resistant pipeline on the CSA dataset

Grey – µ (σ) Vegetation – µ (σ) Rock/sand – µ (σ) Total – µ (σ)

Repeat Mono Stereo Mono Stereo Mono Stereo Mono Stereo

1 59 (47) 85 (60) 42 (35) 24 (21) 39 (31) 23 (19) 140 (95) 130 (77)
2 24 (26) 33 (35) 26 (25) 14 (14) 21 (21) 13 (15) 71 (58) 60 (47)
3 9.6 (17) 19 (24) 10 (16) 10 (11) 10 (16) 8.3 (11) 30 (41) 38 (34)
4 2.2 (4.9) 7.8 (11) 8.0 (15) 7.3 (8.8) 3.7 (7.1) 5.4 (8.3) 14 (22) 20 (18)
5 1.4 (3.9) 3.7 (7.3) 4.1 (7.6) 6.2 (7.6) 2.9 (6.0) 3.2 (6.5) 8.4 (14) 13 (14)
6 0.9 (2.7) 1.6 (3.8) 6.2 (10) 4.7 (6.2) 2.2 (4.3) 1.7 (4.4) 9.3 (12) 8.0 (8.2)
7 1.6 (3.5) 2.2 (5.4) 4.5 (8.3) 5.0 (6.8) 1.7 (2.7) 1.3 (3.1) 7.8 (10) 8.5 (9.3)
9 3.8 (7.6) 9.1 (14) 8.0 (13) 7.4 (9.3) 3.0 (5.3) 3.2 (6.4) 15 (20) 20 (19)
10 3.5 (8.3) 7.4 (13) 6.1 (9.8) 6.0 (7.6) 2.6 (4.6) 2.8 (5.8) 12 (17) 16 (17)
11 6.2 (11) 16 (20) 7.5 (12) 8.4 (10) 6.4 (11) 6.4 (9.7) 20 (27) 30 (27)
12 6.7 (12) 14 (19) 7.3 (12) 8.1 (9.6) 5.5 (8.9) 5.7 (8.5) 20 (26) 28 (25)
13 10 (18) 22 (29) 9.1 (14) 9.4 (10) 7.9 (13) 6.9 (10) 27 (37) 39 (37)
14 7.4 (13) 17 (21) 6.7 (11) 8.0 (9.2) 6.7 (11) 7.0 (10) 21 (29) 32 (29)
15 9.4 (18) 22 (30) 11 (16) 8.9 (9.5) 7.5 (12) 7.3 (10) 27 (37) 38 (38)
16 8.1 (16) 22 (29) 8.5 (14) 9.3 (9.6) 6.4 (11) 7.7 (11) 23 (35) 39 (38)
17 8.5 (13) 21 (23) 8.7 (14) 7.8 (8.6) 8.7 (13) 9.5 (13) 26 (32) 38 (34)
18 8.4 (15) 19 (24) 10 (15) 8.8 (8.9) 7.6 (12) 8.1 (11) 26 (34) 36 (34)
19 6.4 (12) 14 (20) 7.6 (12) 7.9 (8.8) 5.9 (10) 6.0 (9.0) 20 (29) 28 (28)
20 5.8 (11) 14 (18) 6.5 (11) 7.2 (8.4) 5.6 (9.2) 6.3 (9.2) 18 (26) 27 (26)
21 5.3 (10) 12 (16) 8.0 (13) 7.1 (8.1) 5.6 (9.5) 5.5 (8.5) 19 (27) 25 (23)
22 2.7 (5.6) 6.7 (10) 5.7 (10) 5.5 (6.7) 3.4 (5.7) 4.2 (7.4) 12 (18) 16 (17)
23 5.5 (9.0) 13 (18) 8.4 (12) 7.0 (8.0) 4.6 (7.1) 5.2 (8.5) 18 (23) 25 (25)
24 3.4 (6.8) 8.7 (12) 7.1 (13) 6.0 (7.5) 3.3 (5.7) 3.7 (6.6) 14 (21) 18 (18)
25 4.9 (9.6) 12 (16) 6.0 (9.4) 5.1 (6.0) 3.5 (6.6) 3.8 (7.1) 14 (20) 20 (22)
27 2.2 (6.1) 9.0 (14) 3.6 (5.1) 3.6 (3.8) 2.3 (4.3) 3.8 (6.3) 8.1 (13) 16 (20)

Mean 8.3 (12) 16 (16) 9.5 (7.9) 8.1 (3.9) 7.1 (7.7) 6.4 (4.3) 25 (27) 31 (24)

5.5 Comparison of Keypoint Match Stability

In order to understand the effect that color-constant images have on the robustness of the monocular pipeline,
it is illustrative to compare the number of keypoint matches across repeat passes (see Figures 16 to 18 and
Table 7). Although each individual image (grey, vegetation, and rock/sand) yields a modest number of map
keypoint matches, the combination of matches from all three images is sufficient to permit substantially
more reliable localization than using the grey image alone, even without accounting for lighting changes.
Consulting Table 7, we see that on average, the stereo pipeline tends to match twice as many map keypoints
in the grey image as the monocular pipeline, but both pipelines match approximately the same number of
color-constant map keypoints on average, yielding total match counts that are more similar on average than
those obtained from the grey images alone. We also see that the spread of average keypoint matches is
smaller for the two color-constant images than for the grey images, indicating that they are generally more
reliable sources of stable keypoint matches than the grey image. This is the main reason for the improved
robustness of the lighting-resistant monocular pipeline seen in Figure 15.

5.6 Limitations

Although the use of color-constant imagery provides monocular VT&R with significant gains in robustness, its
performance remains worse than its stereo counterpart, especially when the lighting has changed substantially
after map creation. Consulting Figures 17 and 18, we notice that the total number of keypoint matches is



consistently lower in the monocular case than in the stereo case. We believe this is due mainly to the
orientation of the camera in this dataset. In Section 4, we showed that the monocular pipeline generally
matches similar, if not somewhat higher, numbers of keypoints to the map when the camera is mounted at
47◦ to the horizontal (see Figures 7 and 11). However, since the camera on the Grizzly RUV was mounted at
a fairly shallow angle, 29◦ to the horizontal, much of the camera’s field of view is taken up by objects not on
the ground, especially trees and rock faces. Since keypoints detected on non-ground objects severely violate
the planarity assumption in our monocular pipeline, even with uncertainty, they are typically rejected as
outliers, thereby reducing the total number of inlying keypoint matches. Although it is impossible to verify
on this dataset, we believe that the monocular pipeline would have enjoyed even greater gains in robustness
if the camera had been angled more steeply towards the ground.

6 Conclusions and Future Work

We have presented a Visual Teach and Repeat (VT&R) system that is capable of autonomously repeating
kilometer-scale routes with centimeter-scale accuracy in rough terrain, using only monocular vision. By
approximating the scene geometry as a manifold of uncertain local ground planes, we relax the requirement
for true 3D sensing that had prevented the deployment of Furgale and Barfoot’s (2010) VT&R system on a
wide range of vehicles equipped with monocular cameras. Field tests on 4.3 km of autonomous navigation
in which our monocular VT&R system was used to control a robotic vehicle have demonstrated that our
system is capable of achieving route-repetition accuracy on par with its stereo counterpart, achieving an
overall autonomy rate of 99.4% in these experiments.

In our previous conference paper (Clement et al., 2015), we noted that our monocular VT&R system is
less robust to lighting and self-similar textures than its stereo counterpart. In this work, we address this
trade-off through the use of color-constant imagery that is robust to shadows and illumination changes in
scenes with vegetation, rocks, and sand (Ratnasingam and Collins, 2010; Paton et al., 2015a). In contrast to
lighting-resistant active sensing techniques such as appearance-based lidar (McManus et al., 2013), our system
achieves lighting-resistance using only physics-based transformations of images obtained from a passive RGB
sensor. We demonstrate through offline testing on an additional 26 km of autonomous navigation data that
the addition of color-constant imagery to the monocular pipeline results in vastly improved localization
quality compared to the use of standard grey images only. However, the localization performance of the
lighting-resistant monocular pipeline still falls short of that of the lighting-resistant stereo pipeline.

This work is novel in several ways. First, it is the only VT&R system capable of repeating kilometer-scale
routes using only 2D monocular vision for motion estimation. Second, it is the first monocular localization
system that both builds and localizes against maps generated from color-constant images inside a control
loop. Finally, our system has been extensively tested on multiple vehicles in a variety of terrestrial and
planetary-analogue environments, which is an important contribution in itself since it has allowed us to
identify the strengths and weaknesses of our approach in realistic settings.

One important lesson learned from our experiments is that our monocular VT&R system is sensitive to
a number of tuning parameters, especially those pertaining to keypoint uncertainty and outlier rejection.
Rather than searching manually through this high-dimensional parameter space for a configuration that may
or may not be optimal, future extensions to this system could incorporate iterative learning algorithms such
as those proposed by Ostafew et al. (2013) to learn these parameters from experience.

Another important lesson is that our system is sensitive to camera placement, apparently performing better
when the camera is angled more sharply towards the ground. Further experimentation to determine an
optimal camera orientation could prove fruitful, and need not be limited to varying the camera’s angle to
the horizontal. For example, orienting the camera perpendicular to the direction of travel has been shown
to improve the accuracy of stereo visual odometry (Peretroukhin et al., 2014). In future we would like
to experiment with with alternative camera orientations to determine whether our monocular localization



pipeline exhibits similar improvements in accuracy.

As mentioned in Section 3.2, our depth estimation scheme could easily be extended to incorporate informa-
tion from other sensors to estimate the ground-to-vehicle transformation. For ground vehicles, an inertial
measurement unit (IMU) could be used to smooth out the transition between local ground planes, particu-
larly when driving up or down small hills where the hill surface does not occupy enough of the camera field
of view to constitute the dominant ground plane. This could potentially allow us to reduce the uncertainty
in the ground plane orientation and achieve more reliable feature tracking. For aerial vehicles, an altimeter
and IMU could be used to ensure that the local ground plane is always orthogonal to the gravity direction,
irrespective of the vehicle orientation. This presents an interesting avenue for future work on improving our
technique and extending it to a wider range of autonomous vehicles, although this relies on the availability
of an additional sensor (an IMU).

In summary, we have shown that centimeter-accurate autonomous visual route-repetition is possible using
only monocular vision and simple assumptions about scene geometry. We have validated this approach
through online and offline testing on a combined 30 km of autonomous navigation data collected in multiple
environments using two different robotic vehicles. While our monocular VT&R system is less robust to
common failure cases than its stereo counterpart, we have shown that its robustness can be significantly im-
proved by introducing computationally cheap color-constant imagery to the localization pipeline. Regardless,
we believe that the benefit of deploying VT&R on existing monocular vehicles without requiring additional
sensors far outweighs the modest reduction in robustness compared to an equivalent stereo system.
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