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I. INTRODUCTION

Due to their compact, inexpensive nature, cameras are
now a common component of many robotic platforms in
academia and industry. Visual information from cameras can
be used in numerous ways, including mapping, localization,
and object recognition. These tasks often involve identifying
and tracking sparse visual features across image frames.
For rapidly moving platforms such as micro-aerial vehicles,
legged robots, and human first responders, it is important for
visual features to be accurately and reliably tracked through
abrupt motions with substantial motion blur. In this work,
we show that estimators that rely on sparse feature tracking
can actively account for motion blur by scaling image error
covariance as a function of the rotational speed of the camera.

II. BACKGROUND

Sparse visual features reduce a high dimensional image
space to a small set of salient points. A large number of
feature extraction algorithms exist in the literature, each
with a specific definition of saliency. Such algorithms are
commonly paired with a scale- or rotation-invariant feature
descriptor (e.g., SURF [1], BRISK [2], and FREAK [3]),
which enables matching between images.

Alternatively, features can be tracked using image
gradient-based algorithms such as KLT [4] tracking.
Gradient-based tracking is limited to small image displace-
ments, but has been shown to outperform frame-to-frame
descriptor matching in terms of both speed and accuracy
[5]. Neither descriptor matching nor gradient-based tracking
explicitly accounts for motion blur.

A comparison of feature tracking methods requires ground
truth for arbitrarily selected features in a scene. This is
a challenging task because, in general, it is difficult to
ensure that known real-world points will correspond to well-
localized image features. Gauglitz et al. [6] attack this prob-
lem by semi-automatically detecting four known landmarks
(red balls) on a planar target in each image frame. The
authors estimate a homography using feature matches and
use it to predict the locations of the balls in each frame. They
distinguish between successful and unsuccessful tracking by
thresholding the error in the predicted ball locations for a
variety of camera motions at multiple rotational speeds that
induce different levels of blur.

Although these experiments are useful for identifying
tracking failures, they omit several important considerations.
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(a) Low blur (b) Medium blur (c) High blur

Fig. 1. Examples of three levels of blur for the “Building” texture [6].
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Fig. 2. Comparison of KLT tracking error histograms and fitted Gaus-
sian distributions for Low (fi-bu-m1), Medium (fi-bu-m5), and High
(fi-bu-m9) motion blur sequences shown in Figure 1. Note the difference
in scales. The error distributions remain approximately zero-mean and
Gaussian at all blur levels.

Notably, they do not quantify the error in the tracked feature
positions themselves, nor do they evaluate the performance
of KLT tracking on the known landmarks. In this work, we
quantify KLT tracking error, and examine its response to
varying levels of motion blur using the dataset of Gauglitz
et al. [6]. We compare two methods for quantifying blur: the
vision-based blur score of Crete et al. [7], and the rotational
speed of the camera (similarly to Mutlu et al. [8]).

III. EXPERIMENTS

In [6], a camera mounted on a pan-tilt head observes an
image mounted on a plane of plexiglass approximately one
meter away. The dataset includes video sequences of six
scene textures (Figure 3) and nine camera pan speeds, each
inducing a different level of motion blur (Figure 1).

For each texture, we detect SURF features in the textured
region of interest in the first frame of the minimum-blur
sequence. We then track these features through the video
sequence using KLT tracking, and record the vertical and
horizontal distances between the tracked feature coordinates
and the features coordinates computed from ground truth
homographies. For the remaining eight sequences, we ini-
tialize the KLT tracker with the same features as in the



Fig. 3. The textures used in [6]: “Wood” (fi-wd), “Bricks” (fi-br), “Building” (fi-bu), “Paris” (fi-pa), “Mission” (fi-mi), and “Sunset” (fi-su).
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Fig. 4. Comparison of Gaussian-fitted means and standard deviations of KLT tracking error for each of the six textures at all nine camera pan speeds.
These plots show that, as camera pan speed (and hence motion blur) increases, the distribution of tracking error remains approximately zero-mean but with
increasing variance. Since the motion in these sequences is almost purely horizontal, horizontal motion blur dominates and we see larger tracking errors
in the horizontal direction than in the vertical direction.

first sequence. To ensure a consistent tracking baseline, we
evenly sub-sample each sequence so that it contains the same
number of frames as the shortest sequence.

Figure 2 shows histograms and fitted Gaussian distribu-
tions of the KLT tracking error for the three “Building”
sequences shown in Figure 1. The plots show that the
distributions of both horizontal and vertical tracking error
remain approximately zero-mean and Gaussian, but that the
variance in the errors increases as motion blur increases.

Figure 4 shows Gaussian-fitted means and standard devi-
ations of KLT tracking error for all six textures over all nine
camera pan speeds in the dataset. Again, the mean horizontal
and vertical errors stay close to zero at all speeds, but the
standard deviation of the horizontal errors exhibits a clear
upward trend as rotational speed increases. The standard
deviations of the vertical errors increase only slightly due
to the fact that the camera motion is mainly horizontal.

Since the distribution of KLT tracking error is always zero-
mean and Gaussian, these results suggest that the effect of
motion blur on feature tracking accuracy can be captured by
actively scaling the covariance matrix associated with each
feature observation. As an aside, we note that covariance
scaling can also be applied to other deleterious visual effects
(e.g., shadows, self-similar textures and moving objects)
using a learning technique such as PROBE [9].

To account for motion blur, the covariance scaling function
should increase with some measure of the blur. Here, we
investigate two such measures: the first is a vision-based
blur metric [7] that compares the image gradients of the
original image with those of a low-pass-filtered version; the
second is simply the rotational speed of the camera, which
is specified in [6], but can be measured in practice with a
gyroscope. We find that the vision-based blur metric does
not correlate well with tracking error, and varies significantly
with scene texture and camera properties, while the rotational
speed of the camera does correlate well with tracking error as
shown in Figure 4. Indeed, the blur metric produces a nearly
constant response for pan speeds above 0.1 deg/sec (Figure
5), even though the error variance continues to increase. We
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Fig. 5. Comparison of mean blur metric [7] against camera pan speed for
each of the six textures. For pan speeds smaller than about 0.1 deg/sec, the
blur metric increases as a function of pan speed, however it produces an
effectively constant response at higher speeds and is therefore not a good
predictor of error variance in this regime.

conclude that the rotational speed of the camera is therefore
a better predictor of the variance of KLT tracking error.
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