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�e ability to estimate egomotion is at the heart of safe and reliable mobile autonomy. By inferring

pose changes from sequential sensor measurements, egomotion estimation forms the basis of map-

ping and navigation pipelines, and permits mobile robots to self-localize within environments where

external localization information may be intermi�ent or unavailable. Visual egomotion estimation,

also known as visual odometry, has become ubiquitous in mobile robotics due to the availability of

high-quality, compact, and inexpensive cameras that capture rich representations of the world. Classi-

cal visual odometry pipelines make simplifying assumptions that, while permi�ing reliable operation

in ideal conditions, o�en lead to systematic error. In this dissertation, we present four ways in which

conventional pipelines can be improved through the addition of a learned hyper-parametric model.

By combining traditional pipelines with learning, we retain the performance of conventional tech-

niques in nominal conditions while leveraging modern high-capacity data-driven models to improve

uncertainty quanti�cation, correct for systematic bias, and improve robustness to deleterious e�ects

by extracting latent information in existing visual data. We demonstrate the improvements derived

from our approach on data collected in sundry se�ings such as urban roads, indoor labs, and planetary

analogue sites in the Canadian High Arctic.
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Epigraph

A li�le learning is a dangerous thing; drink
deep, or taste not the Pierian spring: there
shallow draughts intoxicate the brain, and
drinking largely sobers us again.

Alexander Pope

�e universe is no narrow thing and the
order within it is not constrained by any
latitude in its conception to repeat what
exists in one part in any other part. Even in
this world more things exist without our
knowledge than with it and the order in
creation which you see is that which you
have put there, like a string in a maze, so
that you shall not lose your way. For
existence has its own order and that no
man’s mind can compass, that mind itself
being but a fact among others.

Cormac McCarthy

Elephants don’t play chess.

Rodney Brooks
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Notation

a : Symbols in this font are real scalars.
a : Symbols in this font are real column vectors.
a : Symbols in this font are real column vectors in homogeneous coordinates.
A : Symbols in this font are real matrices.

N (µ,R) : Normally distributed with mean µ and covariance R.
E[·] : �e expectation operator.
F−→a : A reference frame in three dimensions.
(·)∧ : An operator associated with the Lie algebra for rotations and poses. It produces a

matrix from a column vector.
(·)∨ : �e inverse operation of (·)∧.

1 : �e identity matrix.
0 : �e zero matrix.

pcba : A vector from point b to point c (denoted by the superscript) and expressed in F−→a

(denoted by the subscript).
Cab : �e 3× 3 rotation matrix that transforms vectors from F−→b to F−→a: pcba = Cabp

cb
b .

Tba : �e 4 × 4 transformation matrix that transforms homogeneous points from F−→a

to F−→b: pcbb = Tbap
ca
a .

viii



Chapter 1

Introduction

What we call the beginning is o�en the end.
And to make an end is to make a beginning.

T.S. Eliot

�is dissertation presents a general approach to improve visual egomotion estimation for mobile
autonomous platforms. In the broadest sense, egomotion estimation refers to the process of computing
the motion of a rigid body—relative to a �xed frame of reference—using measurements from sensors
a�ached to the body (hence egomotion1).

Remark (Autonomy through history). Mobile automata have been a part of human culture since an-
tiquity. In ancient India, the king Ajatashatru was said to use bhuta vahana yanta (‘spirit movement
machines’) to protect the relics of Gautama Buddha a�er his death in the fourth century BCE. Ac-
cording to Burmese legend, the bhuta vahana yanta of Ajatashatru were made with stolen secrets
from a group of Greco-Roman ‘roboticists’ named the yantakara. �e methods of the yantakara were
closely guarded, and mechanical assassins were said to pursue those who a�empted to disseminate
them (Mayor, 2019).

In the millennia since, mobile automata were relegated to isolated demonstrations (e.g., the pro-
grammable cart of Hero of Alexandria or the ‘autonomous’ knight of Leonardo da Vinci) or to imagined
forms in cautionary tales (e.g., Mary Shelley’s Frankenstein). Although the secrets of the yantakara may
never be rediscovered, the ancient pursuit of helpful automata has found new life towards the turn of
the twenty-�rst century and yielded machinery and algorithms that show great promise in aiding
humanity.

1To the best of the author’s knowledge, this term originates from experimental psychology (Warren, 1976), and was also
referred to as passive navigation in the context of camera motion (Bruss and Horn, 1983).
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2 Chapter 1. Introduction

Figure 1.1: A chip log is a historical tool used to
measure ship speed. �e log or chip was tossed into
the water, and speed was measured by the amount
of knots that unravelled in a set time interval (credit:
oceonmotion.org).

One way to estimate egomotion is to measure
rates (e.g., linear or rotational velocities) and in-
tegrate them to compute changes in position and
orientation. �is method, referred to as dead reck-

oning, was used by marine navigators of ancient
times to determine the longitude of a ship at sea.
Unlike latitude, which navigators could determine
by measuring the altitude of the noon Sun, or the
altitude of Polaris (the North Star) at night, lon-
gitude was not reliably computed from celestial
measurements until the development of the marine
chronometer in the 18th century (Sobel, 2005). As a
result, early seafarers could only dead reckon east-
west motion by relying on estimates of local wa-
ter currents, and by measuring the ship’s magnetic
heading and its speed relative to water (through a
tool called a chip log, Figure 1.1).

In a similar process, early aviators computed
egomotion through magnetic heading, airspeed,
and an estimate of prevailing winds. While even
modern egomotion estimation methods exhibit un-
bounded error growth (Olson et al., 2003), these early techniques were particularly inaccurate and re-
quired regular corrections through observations of known landmarks.2 In the mid twentieth century,
the goals of inter-continental �ight and space exploration spurred the development of more accurate
egomotion sensors (e.g., gimballed inertial platforms including accelerometers and gyroscopes) and
an associated set of estimation techniques that could compute egomotion without human interven-
tion (e.g., the Kalman �lter (Grewal and Andrews, 2010)).

By the late twentieth century, unmanned Lunar and Martian exploration motivated a new ap-
proach to egomotion estimation. Although ground vehicles such as extra-planetary rovers could infer
egomotion by using the technique of wheel odometry (the process of integrating wheel rates and using
wheel orientation to drive a kinematic model), this approach was highly inaccurate on surfaces that
could induce wheel slip such as the rock and sand covered dunes of Mars (Figure 1.3).

To address this, a number of researchers in the 1980s developed the technique of visual odometry
(Moravec, 1980) (or VO), as a way to infer egomotion from sequentially-collected images. �e math-
ematical basis of VO is closely tied to the technique of photogrammetric bundle adjustment (Brown,
1958) which originates from 19th century photogrammetry (Albertz, 2007).

2Perhaps the most famous example of dead-reckoning error was made by Christopher Columbus in 1492 when he arrived
in modern-day Bahamas, but believed he had reached the Indies (modern Indonesia).



1.1. A Visual Pipeline 3

Figure 1.3: �e last 360 degree panorama of the rocky Martian surface taken by the Pancam apparatus of the
Mars Exploration Rover, Opportunity, at its �nal resting place, the western rim of the Endeavour Crater (credit:
NASA/JPL-Caltech/Cornell/ASU ).

Mapping Detection  
& Tracking

Localization

T
<latexit sha1_base64="XMe1s51krsmjdR3sSegwxPVzX+Q="></latexit>

Figure 1.2: A Venn diagram depicting three major com-
ponents of visual perception in the context of mobile
autonomy. Egomotion estimation is a form of self-
localization that can aid both mapping and detection.

In the nearly four decades since the �rst de-
velopment of VO, the proliferation of compact,
relatively-inexpensive, high-resolution cameras
has made vision-based sensing techniques ubiq-
uitous in mobile autonomy applications. In ad-
dition to computing egomotion, camera data can
be used to build detailed maps of an environment
through a technique called simultaneous local-
ization and mapping, or SLAM (Durrant-Whyte
et al., 1996), and to detect, track and avoid other
objects (Figure 1.2).

1.1 A Visual Pipeline

Central to classical visual odometry algorithms
(which, in this context, refers to the bulk of VO
research published during what Cadena et al. (2016) call the classical and algorithmic-analysis ages
of VO and SLAM research between 1986 and 2015) is the idea of a processing pipeline. A pipeline
consists of several connected computational ‘blocks’ that have interpretable inputs and outputs. By
carefully processing information contained within raw sensor data, pipelines facilitate the construction
of complex state estimation architectures that can fuse visual observations with other sensors of varied
modality to create maps and models of the external world and infer the egomotion of a mobile platform
within it. In this dissertation, we will largely deal with the improvement of a canonical visual odometry
pipeline—we illustrate its major components in Figure 1.4.

VO solutions based on the idea of hand-cra�ed pipelines (Leutenegger et al., 2015; Cvišić and
Petrović, 2015; Tsotsos et al., 2015; Alcantarilla and Woodford, 2016; Forster et al., 2014; Wang et al.,
2017a; Engel et al., 2018) have achieved impressive localization accuracy within a variety of platforms
and se�ings. Such pipelines have been used in desolate Martian landscapes as well as within urban
environments teeming with pedestrians; they are versatile enough to track the motion of cameras
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Pre- 
processing

Data 
association

Motion 
estimation

• undistortion 
• rectification 
• adjustment
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• tracking 
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• robust 
nonlinear least 
squares

Additional 
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T
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stereo images
egomotion

Figure 1.4: A ‘classical’ visual odometry pipeline consists of several distinct components with interpretable
inputs and outputs. We list common examples of each component.

onboard ground vehicles as well as those onboard highly agile aerial drones.

Building on momentum from the computer vision community, a signi�cant part of the visual
state estimation literature has also considered replacing classical pipelines with parametric modelling
through deep convolutional neural networks (CNNs) and data-driven learning. Although initially de-
veloped for image classi�cation (LeCun et al., 2015), CNN-based measurement models have been ap-
plied to numerous problems in visual state estimation including homography estimation (DeTone et al.,
2016), single image depth reconstruction (Garg et al., 2016), camera re-localization (Kendall and Cipolla,
2016), and place recognition (Sünderhauf et al., 2015). A number of CNN-based approaches have also
tackled the problem of visual egomotion estimation, o�en purporting to obviate the need for classi-
cal visual localization pipelines by learning pose changes end-to-end, without requiring intermediate
outputs (Melekhov et al., 2017; Handa et al., 2016; Oliveira et al., 2017).

In light of these new approaches, debate has emerged within the robotics and computer vision
communities regarding the extent to which data-driven parametric models should replace pipelines.
Although classical approaches can achieve high accuracy under nominal conditions, deep data-driven
networks have the potential to improve upon them in two respects.

First, owing to their representational power, deep parametric networks have the potential to learn
bespoke data associations that are more robust to (1) large viewpoint changes, (2) moving objects, and
(3) self-similar visual textures (e.g., indoor walls, grass, sky, etc.) than traditional methods, which must
be carefully tuned to work well in a given se�ing (Schonberger et al., 2017).

Second, learned models have the potential to be�er exploit dense high-dimensional visual data. To
remain computationally tractable, classical VO pipelines typically take one of two approaches. First,
some pipelines (Leutenegger et al., 2015; Cvišić and Petrović, 2015) choose to indirectly summarize
visual data by extracting and matching a set of sparsely-distributed salient features. �ese features may
be robust to some of the e�ects mentioned above, but, by construction, they discard large portions of
visual data that may inform more accurate egomotion estimates. Alternatively, other methods (Forster
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et al., 2014; Wang et al., 2017a; Engel et al., 2018) may instead choose to match photometric intensity
directly through an assumption of photometric consistency. �is relatively simple schema permits
dense data association but can be a poor assumption in the presence of large viewpoint changes or non-
Lambertian surfaces. Further, this approach yields a high number of data associations and produces a
highly non-convex objective that requires care to optimize.

In contrast, deep networks built on basic image operations with modern computationally-e�cient
implementations have the potential to avoid the pitfalls of both of these approaches while remaining
tractable (assuming appropriate hardware). Despite this potential, current end-to-end learning tech-
niques for egomotion estimation have a number of disadvantages (see Table 1.1). �ey o�en generalize
poorly to new environments, come with few analytical guarantees, provide only point estimates of la-
tent parameters, and do not allow for intermediate representations that have been shown to improve
generalization performance on visual tasks (Zhou et al., 2019). Indeed, according to one benchmark,
the most accurate visual egomotion approach at the time of writing3 remains a classical pipeline based
on carefully selected sparse features.

Table 1.1: A comparison of pipelines and end-to-end deep models for visual egomotion estimation.

Criterion Classical Pipelines End-to-end Models

Maturity

Decades of literature & domain knowl-
edge

Nascent with few uses in mobile au-
tonomy

Interpretability

Good, each component has inter-
pretable input and output

Poor, o�en with no interpretable inter-
mediate outputs

Uncertainty Foundational to probabilistic robotics

Few nascent methods (Monte-carlo
Dropout (Gal and Ghahramani, 2016b),
Bootstrap (Osband et al., 2016))

Flexibility Limited by ingenuity of designer Limited by training data

1.2 Combining Learning with Classical Pipelines

As mobile autonomy enters the robust-perception age (Cadena et al., 2016), classical pipelines that
work in limited contexts will need to be adapted and augmented to ensure they can operate over longer
time periods, and through challenging environments. However, replacing these performant pipelines
completely with learned approaches is, in most cases, unnecessary. Instead, we argue that machine-
learning-based (hyper-)parametric models should be used to improve existing pipelines through three
primary mechanisms: uncertainty quanti�cation, bias correction and the extraction of useful latent
representations (Figure 1.5). Instead of replacing an entire pipeline, these techniques leverage the rep-

3Based on the KITTI Odometry benchmark leaderboard at http://www.cvlibs.net/datasets/kitti/eval
odometry.php.

http://www.cvlibs.net/datasets/kitti/eval_odometry.php
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
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Figure 1.5: In this dissertation, we present three ways to combine learned models with classical pipelines to
improve visual egomotion estimation.
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PROBE Sun-BCNN DPC-Net HydraNet
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uncertainty 
quantificationA C B

Figure 1.6: We present four data-driven models that quantify uncertainty (PROBE), correct bias (DPC) and
independently extract latent quantities such as sun direction (Sun-BCNN) and relative rotation (HydraNet).

resentational power of modern data-driven learning techniques to extract useful quantities that make
existing classical pipelines more consistent and accurate in a given environment. In this dissertation,
we present four examples of such learned improvements (Figure 1.6). In each case, the output of the
learned model is fused with a baseline visual odometry pipeline to produce be�er motion estimates. To
accomplish this fusion, we rely on two approaches. �e �rst (Predictive Robust Estimation, or PROBE,
Chapter 4), uses a data-driven model to infer a heteroscedastic noise model based on sensor data. By
predicting uncertainty information, PROBE e�ectively re-scales a robust loss function to be�er account
non-stationary noise models and deleterious visual e�ects. �e second approach (used by Sun-BCNN,
DPC-Net, and HydraNet, Chapters 5 to 7 respectively) produces geometric quantities (probabilistic
estimates of an illumination source, SE(3) bias corrections to existing egomotion estimates, and inde-
pendent probabilistic rotation estimates, respectively), that can be fused with the egomotion estimate
produced by the pipeline through pose graph optimization.
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1.3 Original Contributions

�is dissertation consists of several published contributions under the umbrella of learned improve-
ments to a canonical visual egomotion pipeline. Before detailing each approach, we present some
mathematical foundations (Chapter 2) and a common baseline for a feature-based stereo visual odom-
etry pipeline (Chapter 3) which all four methods build upon. In total, there are two journal papers and
�ve conference papers associated with our work. Below, we brie�y summarize each approach and list
the publications that are associated with each.

1. PROBE: Predictive Robust Estimation,
Predictive Robust Estimation (Chapter 4, Appendix A) builds a predictive model for observation
uncertainty from training data. To do this, we collaborate with William Vega-Brown at MIT
to adapt the technique of Generalized Kernel (GK) estimation (Vega-Brown et al., 2014) to vi-
sual odometry. Generalized Kernel estimation allows us to build an e�cient Bayesian model
for stereo tracking uncertainty. By se�ing a prior on covariance, we derive a ‘robust’ objec-
tive that can be predictively scaled to improve the accuracy and consistency of a feature-based
stereo visual odometry pipeline. PROBE is associated with three publications: Peretroukhin
et al. (2015a,b, 2016). �e �rst two publications explore useful predictors for uncertainty and
build a non-Bayesian isotropic covariance model. �e la�er publication presents the Bayesian
GK approach.

2. Sun-BCNN: Learned Probabilistic Sun Sensor
Sun-BCNN (Chapter 5) is a virtual sun sensor based on a Bayesian Convolutional Neural Net-
work (BCNN) that was developed in collaboration with Lee Clement. Much like a dedicated
hardware sun sensor, Sun-BCNN infers a probabilistic estimate of the direction of the sun that
can be used to inject orientation information into an egomotion pipeline. However, unlike ded-
icated sensors, Sun-BCNN requires no additional hardware and can predict both a mean and
uncertainty from a single RGB image. It is associated with three publications: Clement et al.
(2017); Peretroukhin et al. (2017, 2018). �e �rst publication consists of initial exploratory work
on virtual sun sensors, while the second presents the BCNN formulation. �e �nal publication is
an extended journal article that summarizes the results of the prior two conference publications
and adds two novel contributions: (1) further experimental validation on visual data collected in
the Canadian High Arctic and around Oxford, UK, and (2) investigations into the e�ect of cloud
cover and the possibility of generalization across datasets.

3. DPC-Net: Learned Pose Corrections
Deep Pose Correction (Chapter 6) is an approach to improving egomotion estimates by learning
to correct bias through deep networks. As part of this work, we derive a novel loss function based
on Lie theory that permits the learning six degree-of-freedom pose residuals in a supervised
learning framework. A�er training, our Deep Pose Correction Network (DPC-Net) predicts low-
rate, ‘small’ corrections that can be fused with egomotion estimates from a canonical pipeline.
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DPC-Net does not require any modi�cation to an existing pipeline, and can learn to correct
multi-faceted errors from estimator bias, sensor mis-calibration or environmental e�ects. It is
associated with one journal publication, Peretroukhin and Kelly (2018).

4. HydraNet: Learned Probabilistic Rotation Estimation

Finally, HydraNet (Chapter 7) is a multi-headed network structure that can regress probabilistic
estimates of rotation (elements of the matrix Lie group, SO(3)) that account for both aleatoric
and epistemic uncertainty. HydraNet builds upon results from both Sun-BCNN and DPC that
show that correcting rotation is critical to accurate egomotion estimation. Towards this end,
HydraNet is designed to produce well-calibrated notions of uncertainty over SO(3) that facilitate
fusion with classical egomotion pipelines through a probabilistic factor graph formulation. It is
associated with the publication, Peretroukhin et al. (2019).



Chapter 2

Mathematical Foundations

By relieving the brain of all unnecessary
work, a good notation sets it free to
concentrate on more advanced problems,
and, in e�ect, increases the mental power of
the race.

Alfred North Whitehead

2.1 Coordinate Frames

Before we can present the main contributions of this dissertation, it will be useful to �rst outline the no-
tation and mathematical foundations that underly the work. �roughout this dissertation, we largely
follow the notation of Barfoot (2017) when dealing with three-dimensional rigid-body kinematics.

F−→o

p

r−→
po

Figure 2.1: A position vector expressed in a coordinate frame.

We refer to a three-dimensional position vector, r−→
po, as one that originates at the origin of a coor-

dinate reference frame, F−→o, and terminates at the point p. �is geometric quantity has the numerical
coordinates rpoo when expressed in F−→o. O�en, we will refer to two reference frames such as a world
or inertial frame, F−→i, and a vehicle frame, F−→v . Rotation matrices and rigid-body transformations that

9
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convert coordinates from F−→i to F−→v will be represented as Cvi
1 and Tvi, respectively.

F−→i

t−→
vi

F−→v

p

r−→
pv

r−→
pi

Figure 2.2: Two common references frames used throughout this thesis.

2.2 Rotations

�e rotation matrix C is a member of the matrix Lie group SO(3) (the Special Orthogonal group). We
can de�ne it as follows:

SO(3) = {C ∈ R3×3| CTC = 1,det C = 1}. (2.1)

Remark (Matrix Lie Groups). A group is a set with an operation (which combines two elements to form
a third element that is part of the group) that satis�es the four group axioms: closure, associativity,
identity and invertibility. A Lie group is a group that is also a di�erentiable manifold. Finally, a matrix

Lie group is a group whose elements are matrices and whose operation is matrix multiplication. See
Barfoot (2017); Solà et al. (2018) for more details.

2.2.1 Axis-Angle Parameters

Any rotation can be represented (non-uniquely) as a rotation of angle φ about an axis a (Hartley et al.,
2013). Concretely, we can map an axis-angle vector, φ = φa, φ ∈ R,a ∈ S2, to a rotation matrix, C,
using the surjective exponential map

C = Exp (φ) = exp
(
φ∧
)

=
∞∑

n=0

1

n!
(φ∧)

n (2.2)

= cosφ1 + (1− cosφ)aaT + sinφa∧, (2.3)

1We use C and not R for rotation matrices to avoid confusion with common notation for measurement model covariance.
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where the wedge operator (·)∧2 is de�ned as

a∧ =



a0

a1

a2




∧

=




0 −a2 a1

a2 0 −a0

−a1 a0 0


 . (2.4)

�e vectorφ is sometimes called the rotation vector (Barfoot, 2017) or referred to as the exponential co-
ordinates (Gallego and Yezzi, 2015) of rotation. Equation (2.3) is o�en referred to as the Euler-Rodriguez
formula. Although the map in Equation (2.2) is surjective, we can de�ne an inverse map if we restrict
its domain to 0 ≤ φ < π:

φ = Log (C) = log (C)∨ =
φ(C−CT)∨

2 sinφ
, (2.5)

where φ = arccos
(

tr(C)−1
2

)
and the vee operator, (·)∨ : R3×3 → R3, is de�ned as the unique inverse

of the wedge operator (·)∧. Note Equation (2.5) is unde�ned at both φ = 0 and at φ = π. In the former
case, we can use a small-angle approximation and de�ne

Log (C) ≈ (C− 1)∨ when φ ≈ 0. (2.6)

�e la�er case (when φ = π) de�nes the cut locus of the space where Exp (·) is not a covering map
and both +φ and −φ map to the same C (thus, we can de�ne the logarithmic map only up to a sign
ambiguity). �is is a fundamental drawback of using three parameters to represent rotation.

2.2.2 Unit�aternions

We can also represent a rotation with unit quaternion, q. A unit quaternion consists of a scalar value
qω , and a three-dimensional vector component, qv :

q =

[
qω

qv

]
∈ S3, (‖q‖ = 1). (2.7)

Unit quaternions also form a Lie group (Solà et al., 2018) (but not a matrix Lie group) and compose
the three-dimensional unit sphere within R4, S3. In a minor abuse of notation, we will use the same
notation to refer to the surjective exponential map that maps three parameters to unit quaternions,

q = Exp (φ) =

[
cos (φ/2)

a sin (φ/2)

]
. (2.8)

2�is operator is sometimes also expressed as (·)× or [·]× and is known as the skew-symmetric operator.
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By inspection3, we can see that both q and −q represent the same axis-angle pair, {φ,a}. As a re-
sult, unit quaternions represent a double cover of SO(3) and we must be careful to account for this
when using them as a rotation parametrization. In particular, when computing the (also overloaded)
logarithmic map,

φ = Log (q) = 2qv
arctan (‖qv‖ , qω)

‖qv‖
, (2.9)

we can must account for the double cover by replacing q with −q if qω is negative. Also note that
as with rotation matrices Equation (2.9) is unde�ned when φ = 0, but, importantly, we do not face
any issues when φ = π due to the half-angle. In the former case, we can again rely on small angle
approximations to de�ne:

Log (q) ≈ qv
qω

(
1− ‖qv‖

2

3q2
ω

)
when φ ≈ 0. (2.10)

A summary of the origins of rotation parameterizations and quaternion algebra can be found in Alt-
mann (1989).

2.2.3 Topology and Parameterizations

Topologically, SO(3) is di�eomorphic
4 to the real projective space, RP3, the space of all lines passing

through the origin in R4 (Hartley et al., 2013). As a result, any global n-parametrization of SO(3)

will incur some cost. If we use rotation matrices (n = 9), we need to ensure orthonormality and that
det C = 1. With unit quaternions (n = 4), we need to account for the unit-norm constraint and take
note of the double cover. Parameterizations with n = 3 (like axis-angle parameters or Euler angles)
will be bounded, but unconstrained. However, due to the topological structure of SO(3) all three-
parameter parameterizations will not be invertible for certain rotations. With Euler angles, one has
to be wary of gimbal lock, wherein two angles become indeterminate from each other. For axis-angle
parameters, even if we apply the bounds 0 ≤ φ ≤ π, it is not possible to uniquely represent rotations
whose angle is π.

Remark (SO(3) Topology). Since we can represent any element in SO(3) by a (non-unique) axis-angle
pair {a, φ}, a ∈ S2, and 0 ≤ φ ≤ π, this space can be visualized as the closed ball of radius π in
R3 using the combined axis-angle coordinates φ = φa. However, at the boundary (φ = π), we must
account for the fact that rotations represented by {a, π} are identical to those represented by {−a, π}.
In other words, we must identify all antipodal points, φ and −φ when ‖φ‖ = π. �is closed 3-ball
with identi�ed antipodal points on its boundary is topologically equivalent to the 3-sphere (S3) with
its antipodal points identi�ed. In turn, this space is equivalent to RP3 since any line passing through

3Using the property that {φ,a} represents the same rotation as {−φ,−a} and the fact that sin and cos are odd and even
functions, respectively.

4A di�eomorphism is a smooth invertible function that maps one di�erentiable manifold to another.



2.3. Spatial Transforms 13

the origin in R4 can be mapped to two unit normals, ±n ∈ S3. �is identi�cation makes rotation
representation particularly tricky in R3 and clearly explains why unit quaternions, q ∈ S3, are a
double cover of SO(3), since we must add the relation q = −q to make these two spaces equivalent.
Alternatively, one can use the gnonomic projection (Hartley et al., 2013) to provide geometric intuition
for why SO(3) is a projective space.

Accordingly, in this dissertation, we parametrize rotations as the constrained quantities, q or C.
When dealing with perturbations about a given rotation (e.g., to compute updates to a state, or to
propagate uncertainty), we use small rotations, δC or δq, parametrized using three unconstrained pa-
rameters that we can assume are a one-to-one mapping to elements in SO(3) (since, for small rotations,
‖φ‖ << π).

2.3 Spatial Transforms

�e rigid body transform T is a also a member of the matrix Lie group, the Special Euclidean group
SE(3) and can be de�ned as a 4× 4 matrix as follows:

SE(3) = {T =

[
C t

0T 1

]
∈ R4×4| C ∈ SO(3), t ∈ R3}. (2.11)

As a member of a matrix Lie group, it also admits a surjective exponential map,

T = Exp (ξ) = exp
(
ξ∧
)

=
∞∑

n=0

1

n!
(ξ∧)

n (2.12)

where ξ =
[
ρT φT

]T
∈ R6 are the exponential coordinates of rigid-body transforms and the wedge

operator is overloaded (following Barfoot (2017)) as follows:

ξ∧ ,

[
ρ

φ

]∧
=

[
φ∧ ρ

0T 0

]
. (2.13)

In practice, we can evaluate the exponential map through the Euler-Rodriguez formula (Equation (2.3))
and by computing the le�-Jacobian of SO(3), J,

T = Exp

([
ρ

φ

])
=

[
C(φ) J(φ)ρ

0T 1

]
, (2.14)

where
J(φ) =

sinφ

φ
1 +

(
1− sinφ

φ

)
aaT +

1− cosφ

φ
a∧. (2.15)
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2.3.1 Applying Transforms

Applying our notation for coordinate frames (and referring back to Section 2.1), a transform, Tvi can
be expressed as

Tvi =

[
Cvi tivv

0T 1

]
. (2.16)

�is allows us to use the homogeneous point representation for rpii and express the relation rpvv =

Tvir
pi
i , or [

rpvv

1

]
=

[
Cvi tivv

0T 1

]

︸ ︷︷ ︸
Tvi

[
rpii
1

]
, (2.17)

which is algebraically equivalent to
rpvv = Cvir

pi
i + tivv . (2.18)

2.4 Perturbations and Tangent Spaces

When solving optimization problems that involve rotations or rigid-body transforms, it is o�en useful
to consider a small perturbation about an operating point. By leveraging a core property of Lie groups
(that the admit a local, or ‘tangent’, Euclidean parameterization), we can construct an iterative algo-
rithm that successively updates an operating point through optimal perturbations in an unconstrained
tangent space. Using rotations as an example, we can decompose a rotation into a mean, C , Exp

(
φ
)
,

and a small perturbation δφ in three di�erent ways (Barfoot, 2017):

C←





Exp
(
δφ`
)
C le� perturbation,

Exp
(
φ+ δφm

)
middle perturbation,

C Exp (δφr) right perturbation.
(2.19)

In this dissertation, we will rely on the le� and middle perturbations when appropriate. Using small
angle approximations, the Euler-Rodriguez formula (Equation (2.3)) yields Exp (δφ) ≈ 1+δφ∧, which
allows us to write the useful approximation for the le� perturbation:

C← Exp
(
δφ`
)

C ≈ (1 + (δφ`)∧)C. (2.20)

Similarly, we can write analogous expressions for a rigid body transform, T ∈ SE(3), as composed of
a mean T , Exp

(
ξ
)
, and a small perturbation about that mean δξ,

T←





Exp
(
δξ`
)
T le� perturbation,

Exp
(
ξ + δξm

)
middle perturbation,

T Exp (δξr) right perturbation.
(2.21)
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and form a similar approximation to the le� perturbation:

T← Exp
(
δξ`
)

T = (1 + (δξ`)∧)T. (2.22)

We will rely on Equation (2.22) to convert non-linear expressions that involve T into linear expressions
that involve δξ` by decomposing it into a known operating point Top and an unknown perturbation
δξ`. Given an optimal δξ`∗ we can update our operating point with the constraint-sensitive update
Top ← Exp

(
δξ`
)
Top. We note that we will o�en drop the perturbation superscripts (·)` and (·)m for

notational brevity.

Remark (Relating Pertubations). We can relate all the le� and middle perturbations through the le�
Jacobian of SO(3) with the following useful identity (Barfoot, 2017),

Exp ((φ+ δφm)) ≈ Exp (J(φ)δφm) Exp (φ) . (2.23)

From this it follows that δφ` ≈ J(φ)δφm and elucidates why J is called the le� Jacobian. Similarly,
for SE(3), δξ` ≈ J (ξ)δξm, since

Exp ((ξ + δξm)) ≈ Exp ((J (ξ)δξm)) Exp (ξ) , (2.24)

where J , the le� Jacobian of SE(3), is de�ned as

J (ξ) ,

[
J(φ) Q(ξ)

0 J(φ)

]
, (2.25)

with Q(ξ) having an analytic expression (see Barfoot (2017)).

2.5 Uncertainty on Lie Groups

We can also use perturbation theory to implicitly de�ne uncertainty on constrained manifolds (see
Barfoot and Furgale (2014) for a thorough discussion). Given a concentrated5 normal density, δξ ∼
N (0,Σ6×6), we can inject this unconstrained density onto the Lie group through le� perturbations
about some mean using

T = Exp (δξ) T, δξ ∼ N (0,Σ6×6). (2.26)

�is allows us to keep track of a random variable, T, by keeping its mean in group form, T, while its
second statistical moment is stored as a standard 6× 6 covariance matrix, Σ.

5In this context, concentrated means that the chances of sampling δ̃ξ such that δφ ≥ π is near 0 to avoid issues with
singularities.
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We can de�ne an analogous density for rotation matrices given normal densities over rotation
perturbations,

C = Exp (δφ) C, δφ ∼ N (0,Σ3×3), (2.27)

and also, for unit quaternions,

q = Exp (δφ)⊗ q, δφ ∼ N (0,Σ3×3), (2.28)

where ⊗ refers to the standard quaternion product operator (Sola, 2017).

2.6 Deep Learning

�ree of the four pseudo-sensors (Sun-BCNN, DPC, and HydraNet—Chapters 5 to 7) in this dissertation
are built using neural networks and the tools of deep learning (LeCun et al., 2015). We brie�y summarize
these concepts here and refer the reader to Goodfellow et al. (2016) for a more thorough treatment.

2.6.1 Feed-forward Neural Networks

�e basic premise of deep learning is that certain kinds of data are naturally decomposed into hier-
archical structure. For instance, images may have local textures (e.g., edges), which compose basic
primitives (e.g., leaves), which then combine to form semantic objects (e.g., a tree). Consequently, for
this type of data, latent information may be e�ciently extracted through an analogous hierarchical
model. Typically, this is done through a neural network composed of multiple layers (the term neural

comes from the loose biological basis for each layer, and deep refers to the amount of layers contained
in state-of-the-art models). A standard neural layer computes a non-linear transformation from an
input z` to an output z`+1 as

z`+1 = f `(z`) = σ (W`z` + b`) , (2.29)

where W` ∈ RD`out×D`in and b` ∈ RD`out are the parameters of the layer (o�en referred to as the
weight matrix and bias, respectively) and σ(·) is an element-wise non-linearity function.

Remark (Non-linearities). �e optimal choice of non-linearity is an area of active research. Some
common examples include,

σ(x) =





ex−e−x
ex+e−x Hyperbolic tangent, tanh,
max(x, 0) Recti�ed Linear Unit, ReLU,{
x if x ≥ 0

−αx if x < 0
Parametric ReLU, PReLU.

(2.30)
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To produce a feed-forward neural network, L layers are composed in a hierarchy to create a single
parametric function,

NN(x;π) = fL ◦ fL−1 ◦ · · · ◦ f1(x), (2.31)

where f ◦ g refers to function composition, f ◦ g , f(g(·)), and π = {W`,b`}L`=1 are the parameters
of the network.

2.6.2 Convolutional Neural Networks

Convolutional Neural Networks (LeCun et al., 1989), or CNNs, are a particular form of neural network
where at least one of the layers uses convolution in place of matrix multiplication. Due to their e�-
ciency in processing high-dimensional image data, they have become ubiquitous in computer vision
applications (LeCun et al., 2015). Brie�y, a convolution is an operation that transforms a continuous
input signal x(t) into a new signal y(t) as

y(t) =

∫
x(s)k(t− s)ds, (2.32)

where k is o�en called the kernel of the convolution. For two-dimensional discrete input signals,
convolution is de�ned as

y(i, j) =
∑

p

∑

q

I(i− p, j − q)K(p, q). (2.33)

Remark (Convolution vs. Cross-correlation). Most deep learning libraries implement convolution as
the cross-correlation operation

y(i, j) =
∑

p

∑

q

I(i+ p, j + q)K(p, q) (2.34)

which is convolution with the kernel ‘�ipped.’ Unlike convolution, cross-correlation is not commuta-
tive with respect to the input and kernel (but this is typically not important in deep learning contexts).
We note that kernels learned with cross-correlation will be �ipped relative to those learned with true
convolution (Goodfellow et al., 2016).

In this discrete case, a kernel can be represented by a kernel matrix, K, which can have di�erent
size (e.g., K ∈ R3×3), and we may compute Equation (2.33) at di�erent spatial intervals called strides.
To ensure that the convolution is de�ned at the boundaries of the signal, one can also use di�erent
padding strategies. Please refer to Goodfellow et al. (2016) for further information about these hyper-
parameters.

By limiting the size of a kernel, we can use convolutional layers (parametrized by K) to e�ciently
process high-dimensional signals. For images, a standard feed-forward layer would require a scalar
weight for every pixel. In contrast, a convolutional layer can rely on a single kernel (with signi�cantly
fewer parameters than a weight matrix) to process an entire image with shared weights. �is reduces



18 Chapter 2. Mathematical Foundations

the number of parameters of our network, but limits the type of spatial correlations we can model
(since kernels can only capture local relations). To increase the potential modelling capacity of our
network, we can use several independent kernels to process and output multiple channels (Figure 2.3).
Finally, it is important to note that the convolution operator is particularly suited to visual data, as
kernels can act as �lters that pick out salient visual features like corners and edges.

Figure 2.3: A convolutional layer with two kernels that operate over di�erent channels of a two-dimensional
input. Figure from Gal (2016).

2.6.3 Supervised Training

Given a (convolutional) neural network with a set of parameters π (where π may include weight
and bias parameters, W`,b`, as well as convolutional kernel parameters, Kk`) we can use supervised

training to obtain an optimal parameter set π∗. Supervised training requires a dataset of training pairs
D , {(x1,y1), ..., (xN ,yN )} where x ∈ RDx is an input and y ∈ RDy is a target that corresponds
to the desired output of our parametric model. To train the network, we �nd the parameters which
minimize a loss function, L, over this dataset,

π∗ = argmin
π
L ({NN(xi;π),yi}Ni=1). (2.35)

For example, a common loss function for regression problems is mean squared error,

π∗ = argmin
π

1

2N

N∑

i=1

‖NN(xi;π)− yi‖22 . (2.36)

In this dissertation, we will use supervised training in Chapters 5 to 7 and we will explore di�erent
forms of loss functions for geometric quantities that do not allow for a simple Euclidean norms.
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2.6.4 Practical Considerations

Optimization

To train a deep network—that is, to solve Equation (2.35) for optimal parameters—modern approaches
rely on stochastic gradient descent (SGD) through back-propagation (LeCun et al., 2015). SGD avoids
the computationally prohibitive task of computing a gradient over an entire dataset by approximating
the gradient using a randomly selecting subset of training data called a mini-batch. In the majority of
this dissertation, we rely on Adam, a modern SGD-based approach that also maintains an estimate of
second-order curvature (Kingma and Ba, 2017).

Regularization

In order to prevent over��ing to a dataset (i.e., to obtain a model that generalizes to unseen inputs,
x /∈ D), the literature provides a number of methods. An important approach that is used in this
dissertation is dropout (Srivastava et al., 2014). Dropout stochastically ‘zeros-out’ inputs of a particular
layer with probability p,

z`+1 = f `(z) = σ (W`z̃` + b`) , (2.37)

where z̃` = b } z`, bi ∼ Bernoulli(p) and } refers to element-wise multiplication, also known as the
Hadamard product. Intuitively, dropout is a stochastic approach to generating an ensemble of smaller-
parameter networks. Such ensembles are generally less prone to over��ing than a commensurately-
sized monolithic network. Further, this type of stochastic regularization has a fundamental connection
variational inference, which we exploit in Chapter 5.

Pooling and Spatial Invariance

A common operation in convolutional neural networks is pooling (Goodfellow et al., 2016). Pooling is a
non-parametric operation that summarizes the output of a kernel in a particular region. For example,
max-pooling selects the maximum response of a kernel in demarcated regions of an input channel,
thereby downsampling the resulting output. Pooling operations are designed to make convolution
operations invariant to the spatial location of a particular kernel response. �is is important in many
classi�cation tasks (e.g., a tree classi�er should be invariant to the location of a particular leaf) but
may be a detriment to some regression tasks where we would like to preserve spatial information. We
explore building convolutional neural networks without pooling in Chapter 6.



Chapter 3

Classical Visual Odometry

Eventually, my eyes were opened, and I
really understood nature.

Claude Monet

Visual odometry (VO) has a rich history in mobile robotics and computer vision. As this disser-
tation largely deals with the improvement of a baseline visual odometry pipeline, we �rst outline the
components of what we have chosen to be a canonical VO system. For two seminal tutorials on visual
odometry and its more general cousin, visual SLAM, we refer the reader to Scaramuzza and Fraundor-
fer (2011) and Cadena et al. (2016).

Estimator 
(Feature-based vs. Intensity-based)

Camera 
(Monocular  
vs. Stereo)

Feature-Based, 
Indirect, 
Monocular

Intensity-Based, 
Direct,  

Monocular

Feature-Based,  
Indirect, 
Stereo

Intensity-Based, 
Direct,  
Stereo

Non-invertible 
observation 

model

Invertible 
observation 

model

Extract & match  
visual features

Directly use  
pixel intensities 

Semi-direct 
Monocular

Semi-direct 
Stereo

Figure 3.1: A taxonomy of di�erent types of visual odometry.
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Remark (VO Taxonomy). VO can be largely divided along two dimensions (Figure 3.1): (1) the type of
camera used to capture images and (2) the type of data association used to compute motion estimates.

Monocular vs. Stereo Camera: Monocular VO methods (Engel et al., 2018; Tsotsos et al., 2015)
use a single camera to infer motion and can use a single compact, low-power vision sensor. �ey
do not require any extrinsic calibration but must rely on known visual cues or external information
(e.g., wheel odometry, inertial measurements) to provide metric egomotion estimates. Conversely,
stereo VO methods (Engel et al., 2018; Leutenegger et al., 2015; Cvišić and Petrović, 2015) use a stereo
camera to triangulate objects with metric scale. �is allows stereo VO to provide metrically-accurate
egomotion estimates. However, stereo methods rely on accurate extrinsic calibration, and their ability
to resolve depth is limited by the baseline distance between the stereo pair and by the quality of stereo
matches (which can be degraded by self-similar textures, occlusions, and foreshortening e�ects).

Direct vs. Indirect Data Association: �e second distinction is based on the type of data associ-
ation used to match sequential images and infer motion. Direct methods (Engel et al., 2018; Wang et al.,
2017a) make the assumption of brightness constancy, and a�empt to �nd the egomotion estimate that
directly maximizes the similarity of pixel intensities between images. Indirect methods (Leutenegger
et al., 2015; Cvišić and Petrović, 2015), conversely, rely on image features detectors to extract a set of
salient landmarks or features, and then match these landmarks across images (typically by relying on
a view-invariant descriptor).

3.1 Major Components of the Pipeline

In this dissertation, we apply our learned models to a baseline stereo, indirect visual odometry pipeline
(Figure 3.2). We choose this baseline system for its computational e�ciency and robustness. We brie�y
summarize the main components of the pipeline here.

1. Pre- 
processing

2. Data 
association

3. Motion 
estimation
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Figure 3.2: A ‘classical’ stereo visual odometry pipeline consists of several distinct components that have in-
terpretable inputs and outputs.



22 Chapter 3. Classical Visual Odometry

2.4 Multiple View Geometry Constraints 65

regions are cropped ensuring a maximal common view image area. This procedure is
summarized in Fig. 2.10.

Observed object

Left view Right view

Raw stereo 

images

undistortion

Rectification 

and pixel 

interpolation

Crop

Stereo rectification process

Figure 2.10: Stereo rectification routine can be summarized in three main steps: In the
undistortion step, image distortions induced by the camera lens are corrected. In the rectifi-
cation step, images are “deformed” so as the image planes become coplanar and row-aligned.
Then, missing pixel values are interpolated. Finally, the rectified images are cropped ensuring
a good view overlapping.

Feature-based Stereo Matching The stereo correspondence problem establishes
the link between brightness and geometrical scene information. This link is crucial for
achieving scene understanding and 3D structure reconstruction (i.e. objects, surfaces,
etc.). Thus, image points can be associated using a discriminant enough criterion based
on their appearance similarity. This criterion exploits the texture information enclosed
in the images. For this, a score is computed and locally maximized by taking into
account the pixel values included in a centered correlation window as illustrated in
Fig. 2.11.
This technique is called feature-based matching (also known as template matching)
and is well adapted for on-line applications. However, associating points by their local
appearance similarity does not ensure at all the rightness of the stereo matching. For
instance, template association in boundary regions of imaged objects (i.e. speckle re-
gions) may lead to ambiguities. This is due to the background regions in the correlation
window which might be occluded in one of the views. Attempting to reduce as possible
all error sources, robust statistics techniques and geometrical constraints must also be

1. Undistortion

2. Rectification 
& Interpolation

3. Cropping

(a) Recti�cation and undistortion process. Figure adapted
from Florez (2010).
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(b) Ideal stereo camera.

Figure 3.3: We pre-process stereo images (le�) to simulate an ideal stereo camera (right).

3.1.1 Preprocessing

�e preprocessing stage consists of two major steps. First, we use a lens model to undistort each stereo
image. Second, we use the stereo camera calibration (i.e., the intrinsic parameters of each camera and
the extrinsic parameters de�ning the transform T ∈ SE(3) between the two camera reference frames),
to rectify, interpolate and crop the pair of images such that we can assume a ideal frontoparallel stereo

camera model with a single focal length (Figure 3.3). �at is, a stereo camera in which we can assume
that any feature in one camera can be found in the same vertical location in the other (i.e., the epipolar
line is horizontal). We assume the lens model, intrinsic and extrinsic parameters are constant and given
by the dataset, or de�ned by a calibration process prior to data collection (e.g., given by the calibration
tool detailed in Furgale et al. (2013)).

3.1.2 Data Association

Feature Extraction and Matching

Although a number of di�erent types of indirect feature extraction and matching methods have been
presented in the literature (e.g., SIFT, Lowe (1999) or ORB, Rublee et al. (2011)), we choose to use the
viso2 (Geiger et al., 2011) algorithm due to its computationally e�ciency (it can extract thousands of
matches in milliseconds on modern hardware) and its use of a motion model that facilitates match-
ing with sequential images. Brie�y, viso2 features are extracted using blob and corner masks with
non-minimum and non-maximum suppression. Unlike other features detectors that do not assume
a particular camera motion, viso2 assumes a smooth camera trajectory that permits fast matching
through a simple sum-of-absolute-di�erence error metric based on Sobel �lter responses. Features are
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Figure 3.4: Feature tracking using viso2, taken from Geiger et al. (2011). Colours correspond to depth.

matched across a stereo-pair and forward in time with a consistency check to ensure that a single
feature exists in all four images in two stereo camera poses.

Ideal Stereo Camera Model

We model each feature extracted by viso2 as a three-dimensional point landmark that can be expressed
(in homogeneous coordinates) in the camera frame, F−→c, as pi,c ∈ P3. Our ideal stereo camera model,
f(·), projects pi,c into image space coordinates as

yi,c =



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vl

d


 = f

(
pi,c
)

= f
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pi,c, (3.1)

where

M =



f 0 cu 0

0 f cv 0

0 0 0 fb


 . (3.2)

Here, {cu, cv}, f , and b are the principal points, focal length and baseline of the stereo camera respec-
tively (computed through intrinsic and extrinsic calibration) and d , ul − ur is the disparity of the
feature. Note that in this formulation, the stereo camera frame is in the le� optical centre. Given yi,c,
we also de�ne the inverse operation, f−1(·) (triangulation) as:

pi,c =




x

y

z

1




= f−1






ul

vl

d





 =




b
d(ul − cu)
b
d(vl − cv)

b
df

1



. (3.3)
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Outlier Rejection

GivenNt feature tracks (i.e., the image locations of matching features across time), {yi,c0 ,yi,c1}
Nt
i=1, we

�lter out any outliers by applying three-point random sample consensus algorithm (RANSAC, Fischler
and Bolles (1981)) based on an analytic solution to the six degree-of-freedom motion (Umeyama, 1991)
(refer to Appendix B for more details).

3.1.3 Maximum Likelihood Motion Solution

Finally, we compute the rigid-body transform between two stereo camera frames using maximum
likelihood estimation. We de�ne the rigid-body transform, Tt ∈ SE(3), to be the rigid-body transform
between two subsequent stereo camera poses, F−→c0 and F−→c1 ,

Tt = Tc1wT−1
c0w, (3.4)

where F−→w is a prede�ned world frame. For each track, (yi,c0 ,yi,c1), we de�ne an error function,
ei,t(Tt,yi,c0 ,yi,c1), that relates the rigid transform to these stereo feature matches. For notational
clarity, we will refer to this term as simply ei(Tt) with the dependence on the track implied. Next, we
assume that these errors are corrupted by zero-mean independent Gaussian noise with the covariance,
Σi,t;

ei(Tt) ∼ N (0,Σi,t) . (3.5)

Under this noise model, the maximum likelihood transform, T∗t , is given by

T∗t = argmax
T∈SE(3)

Nt∏

i=1

p(ei(Tt)) = argmin
T∈SE(3)

1

2

Nt∑

i=1

ei(Tt)
T Σ−1

i,t ei(Tt). (3.6)

We will de�ne the error function in two di�erent ways.

Point Cloud Error

First, we can follow classical approach (Maimone et al., 2007) and de�ne ei(Tt) based on a three-
dimensional point cloud error. To do this, we invert our stereo camera model to triangulate pairs of
points in each frame, pi,c0 = f−1(yi,c0) and pi,c1 = f−1(yi,c1), and then de�ne a three-dimensional
error,

ei(Tt) = D(pi,c1 −Ttpi,c0) ∈ R3, (3.7)

where D =
[
13×3 0

]
∈ R3×4 converts homogeneous coordinates into Euclidean coordinates.

We can then follow Maimone et al. (2007) and assume each stereo projection is corrupted by additive
Gaussian noise,

yi,c ∼ N
(
ȳi,c,Ri,c

)
, (3.8)
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and compute a density on the error function itself through �rst order noise propagation. �is gives
the density

ei(Tt) ∼ N (0,Σi,t) , (3.9)

where
Σi,t = DGi,c1Ri,c1G

T
i,c1D

T + DTtGi,c0Ri,c0G
T
i,c0T

T
t DT, (3.10)

with Gi,c =
∂f−1

∂y

∣∣∣∣
yi,c

.

Reprojection Error

Alternatively, we can represent reprojection errors in the second frame directly as

ei(Tt) = yi,c1 − f(Ttf
−1(yi,c0)), (3.11)

and assume the following simple noise model

ei(Tt) ∼ N (0,Σi,t) = N (0,Ri,t) , (3.12)

where the subscript t in Ri,t indicates that this measurement covariance refers to the reprojection
error that involves a temporal track.

Importantly, Sibley et al. (2007) show that using reprojection error results in less biased estimates
for long-range stereo triangulation (when compared to point cloud error). Consequently, we favour
this la�er formulation in the large majority of our work (the one exception being the initial work on
isotropic PROBE described in Appendix A).

Solution via Gauss-Newton Optimization

In either case, we have now de�ned a weighted nonlinear least squares problem which can be solved
iteratively using standard techniques. For our purposes, we opt to use Gauss-Newton optimization
and follow Barfoot (2017) to optimize constrained poses.

Namely, at a given iteration n, we linearize the error function ei(Tt), about an operating point
T

(n)
t ∈ SE(3), which results in a quadratic approximation to Equation (3.6). We follow Section 2.4 and

use the le� perturbations δξ` ∈ R6:

Tt = Exp
(
δξ`
)

T
(n)
t ≈ (1 + δξ∧)T

(n)
t . (3.13)

where we have dropped the perturbation superscript for brevity. �is allows us to transform Equa-
tion (3.6) into a linear least squares objective in δξ:

L(δξ) =
1

2

Nt∑

i=1

(ei − Jiδξ)T Σ−1
i (ei − Jiδξ) (3.14)
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where Ji =
∂ei
∂δξ

∣∣∣∣
T

(n)
t

, ei = ei(T
(n)
t ), and Σi = Σi,t(T

(n)
t ). �e minimum to this objective can be

solved for analytically by solving the normal equations. �is results in the optimal parameters,

δξ? =

(
Nt∑

i=1

JT
i Σ−1

i Ji

)−1 Nt∑

i=1

JT
i Σ−1

i ei. (3.15)

Given δξ?, we can update the operating point using the constraint-sensitive update

T
(n+1)
t = Exp (δξ?) T

(n)
t , (3.16)

and iterate until convergence. See Appendix B for more details and an analytic expression for Ji. �ere
are many reasonable choices for both the initial transform T

(0)
t and for the conditions under which

we terminate iteration. For most visual odometry applications, it su�ces to initialize the estimated
transform to identity, and iteratively perform the update given by Equation (3.16) until we see a relative
change in the squared error of less than one percent a�er an update.

3.2 Robust Estimation

Since Equation (3.14) assigns cost values that grow quadratically with measurement error, it is very
sensitive to outlier measurements that may persist through RANSAC. A common solution to this prob-
lem is to replace the quadratic loss function with one that is less sensitive to large measurement errors
(MacTavish and Barfoot, 2015). �ese robust cost functions are collectively known as M-estimators1,
and many variants exist. Each uses a re-weighting function, ρ(·), to de�ne robust least squares (RLS)
objective,

T∗RLS = argmin
T∈SE(3)

N∑

i=1

ρ

(√
eiT Σ−1

i ei

)
= argmin

T∈SE(3)

N∑

i=1

ρ(εi) = argmin
T∈SE(3)

LRLS(T), (3.17)

where we have de�ned εi ,
√

eiT Σ−1
i ei (and dropped the t subscript for clarity). �e basic idea

with M-estimation is to use a ρ(·) that reduces the in�uence of large ε below that of the quadratic
ρ(ε) = 1

2ε
2. �ere are several examples of such functions, including,

ρ(ε) =





c2

2 log
(

1 + ε2

c2

)
Cauchy,

1
2

ε2

c2+ε2
Geman-McClure (Geman et al., 1992),

{
ε2

2 if ε < c

cε− c2

2 if ε ≥ c
Huber (Huber, 1964).

(3.18)

1M, for maximum-likelihood-type since they generalize the basic maximum likelihood solution (Barfoot, 2017).
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where the constant c can be set with reference to asymptotic e�ciency relative to a unit Gaussian
(Holland and Welsch, 1977). To solve Equation (3.17), it is common in the literature to apply the
technique of iteratively reweighted least squares (IRLS) (Holland and Welsch, 1977). To do this, we
de�ne a new non-linear least squares minimization problem,

T∗IRLS = argmin
T∈SE(3)

1

2

N∑

i=1

ei
T Miei = argmin

T∈SE(3)
LIRLS(T) (3.19)

where we de�ne these new weights, Mi, based on an in�uence function, ψ(·) as

Mi =
1

εi

∂ρ

∂ε

∣∣∣∣
εi︸ ︷︷ ︸

ψ(εi)

Σ−1
i , (3.20)

and solve it using the Gauss-Newton approach presented in Section 3.1.3. We claim that upon conver-
gence, T∗IRLS will also minimize Equation (3.17). To see why, consider that

∂LRLS
∂δξ

=

N∑

i

∂ρ

∂εi

∂εi
∂ei

∂ei
∂δξ

=

N∑

i

1

εi

∂ρ

∂εi
ei

T Σ−1
i

∂ei
∂δξ

, (3.21)

where he have used the fact that ∂εi
∂ei

= 1
εi

ei
T Σ−1

i . Now using our de�nition of Mi, we can write,

∂LRLS
∂δξ

=

N∑

i

ei
T 1

εi

∂ρ

∂εi
Σ−1
i

︸ ︷︷ ︸
Mi(T)

∂ei
∂δξ

=

N∑

i

ei
T Mi(T)

∂ei
∂δξ

, (3.22)

where we have made the dependence on T explicit. We could potentially proceed to set this gradient
to 0 and a�empt to solve for an optimal update δξ. However, due to Mi(T), this may be di�cult
in general. Instead, we note that if we evaluate Mi(T) at the current operating point, T(n), (i.e., we
re-weight the loss) we are then le� with the equivalent normal equations that solve ∂LIRLS

∂δξ
= 0.

Furthermore, upon convergence, our solution to the iteratively re-weighted problem T(n) = T∗IRLS
will also minimize the robust objective Equation (3.17), since we must have that,

∂LIRLS
∂δξ

∣∣∣∣
T∗IRLS

=
∂LRLS
∂δξ

∣∣∣∣
T∗IRLS

= 0. (3.23)
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3.3 Outstanding Issues

Finally, we summarize (Table 3.1) several limitations of the canonical visual odometry pipeline we
have presented in this chapter. Namely, the issues of e�ciency, systematic bias and homoscedastic
uncertainty. For each limitation, we will show in this dissertation that we can build a learned model
that addresses it for a particular environment (de�ned by the training data).

Table 3.1: Issues that can be addressed by learned models.

Synopsis Addressed by

Computational e�ciency: classical VO pipelines face a di�cult-
to-optimize trade-o� between using all of the information contained
within image while still remaining computationally tractable.

PROBE (Chapter 4) , DPC
(Chapter 6) , Sun-BCNN
(Chapter 5), HydraNet
(Chapter 7)

Systematic bias: Stereo visual odometry can incur systematic bias
through poor extrinsic or intrinsic calibration, stereo triangulation
errors, poor feature spread (i.e., concentration of features on one side
of an image), and poor data association due self-similar textures.

DPC (Chapter 6), HydraNet
(Chapter 7)

Homoscedastic uncertainty: Stationary, homoscedastic noise in
observation models can o�en reduce the consistency and accuracy
of state estimates. �is is especially true for complex, inferred mea-
surement models.

DPC (Chapter 6) , Sun-
BCNN (Chapter 5), Hy-
draNet (Chapter 7)
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Predictive Robust Estimation

Information is the resolution of uncertainty.

Claude Shannon

Robot navigation relies on an accurate quanti�cation of sensor noise or uncertainty in order to
produce reliable state estimates. In practice, this uncertainty is o�en �xed for a given sensor and
experiment, whether by automatic calibration or by manual tuning. Although a �xed measure of
uncertainty may be reasonable in certain static environments, dynamic scenes frequently exhibit many
e�ects that corrupt a portion of the available observations. For visual sensors, these e�ects include,
for example, self-similar textures, variations in lighting, moving objects, and motion blur. Further,
there may be useful information available in these observations that would normally be rejected by a
�xed-threshold outlier rejection scheme. Ideally, we would like to retain some of these observations
in our estimator, while still placing more trust in observations that do not su�er from such e�ects.

�e �rst learned model we present is a technique we call predictive robust estimation, or PROBE.
�is approach uses non-parametric learning to build a model for anisotropic measurement covariances
within a stereo visual odometry pipeline. Namely, we apply the method of Generalized Kernel (GK)
estimation to a Bayesian treatment of covariance estimation. We show that by assuming a particular
covariance prior over re-projection errors, we can naturally derive a robust least squares objective
that resembles the widely-used Cauchy loss. �e parameters of this robust loss are predicted (hence
predictive robust estimation) for each error term as a function of a prediction space that we de�ne.

Remark (Associated Publications). PROBE was initially published as a simpler non-Bayesian technique
that learned isotropic covariances through a k-nearest-neighbours approach (see Appendix A for more
details). �e following two publications summarize this initial technique:

1. Peretroukhin, V., Clement, L., Giamou, M., and Kelly, J. (2015a). PROBE: Predictive robust esti-
mation for visual-inertial navigation. In Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS’15), pages 3668–3675, Hamburg, Germany

29
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2. Peretroukhin, V., Clement, L., and Kelly, J. (2015b). Get to the point: Active covariance scaling
for feature tracking through motion blur. In Proceedings of the IEEE International Conference on

Robotics and Automation Workshop on Scaling Up Active Perception, Sea�le, Washington, USA.

We signi�cantly extended this technique to full anisotropic covariances and through GK estima-
tion in collaboration with William Vega-Brown at MIT. William was primarily responsible for the
mathematical formulation of Generalized Kernels for VO and provided code to perform e�cient GK
estimation. I was responsible for the VO formulation, the integration of GK estimation into the VO
pipeline, and all of the experimental work.

3. Peretroukhin, V., Vega-Brown, W., Roy, N., and Kelly, J. (2016). PROBE-GK: Predictive robust
estimation using generalized kernels. In Proc. IEEE Int. Conf. Robot. Automat. (ICRA), pages 817–
824 .

We will present this la�er technique in this chapter.
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Figure 4.1: PROBE builds a predictive noise model for stereo visual odometry.

4.1 Motivation and Related Work

�ere is a large and growing body of work on the task of deriving consistent uncertainty estimates for
state estimation. It is possible, for example, to develop be�er bespoke covariance estimates for a par-
ticular estimator modality by choosing a higher-�delity covariance propagation schema (e.g., applying
the implicit function theorem to propagate uncertainties in a laser-scan registration optimization prob-
lem, Censi (2007)).

Alternatively, time-varying uncertainties can be formulated using the Adaptive Kalman Filter and
related work (Gustafsson and Gustafsson, 2000). �is classical approach adapts measurement and pro-
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cess covariances based on past estimation errors. Since it is adaptive, it cannot cope with fast-changing
environments (since it must adapt to past measurements, instead of predicting the uncertainty of cur-
rent measurements). Further, these techniques generally do not provide a straight-forward mechanism
to leverage rich high-dimensional data like images.

To deal with such data, an alternative set of approaches build predictive uncertainty models by
mapping sensor data to a lower dimensional prediction space. By carefully choosing the compo-
nents of this space, it is possible to learn covariances parametrically through weight vectors (e.g., for
range/bearing sensors like the work of Hu and Kantor (2015)) or non parametrically through kernel-
based methods (Vega-Brown et al., 2013; Vega-Brown and Roy, 2013) or Gaussian Processes (GPs) (Ko
and Fox, 2009). Recent work has also shown it is possible to learn this prediction space directly from
data using neural networks (Liu et al., 2018).

Non-parametric models can also be extended to more general covariance matrix models that infer
densities over positive-de�nite matrices (Wilson and Ghahramani, 2011) or apply GP inference for each
element of these matrices (Melkumyan and Ramos, 2011). In both cases, however, inference is o�en
too slow to perform in real-time with high-dimensional feature spaces. Conversely, the inspiration
for this work showed that is possible to build kernel-based models that predict covariances e�ciently
for laser-based scan matching odometry with (Vega-Brown et al., 2013) and without (Vega-Brown and
Roy, 2013) ground-truth pose information .

In the visual domain, estimators o�en cope with varying uncertainty only indirectly through
(static) robust loss functions (Kerl et al., 2013) or modi�ed RANSAC procedures with statistical hy-
pothesis testing (as a way to ensure that tracked visual features have normally distributed residuals)
(Tsotsos et al., 2015). Unlike our predictive approach which can adjust covariances from a single obser-
vation, these techniques are not designed to cope with heteroscedastic measurement noise that may
occur within a single image. Alternatively, it is also possible to carefully select an optimally observable
feature subset based on the highest informativeness—a measure calculated based on the observability
metrics of the camera motion (Zhang and Vela, 2015). Observability, however, is governed by the 3D
location of the features, and therefore cannot predict systematic feature degradation due to environ-
mental or sensor-based e�ects that are independent of location (e.g., self-similar textures). Finally,
since this work was published, a technique that is very close in spirit was published in the context
of robust fundamental matrix estimation (Ran�l and Koltun, 2018). �is approach uses deep learning
to predict the weights of an iteratively reweighted least squares routine–e�ectively mimicking our
predictively robust loss but without the information-theoretic basis.

4.2 Predictive Robust Estimation for VO

In this chapter, we present a principled, data-driven way to build a noise model for visual odometry.
We leverage recent advances in covariance estimation (Vega-Brown and Roy, 2013; Vega-Brown et al.,
2013) to formulate a predictive robust estimator for a stereo visual odometry pipeline. By framing
the traditional non-linear least squares optimization problem as a problem of maximum likelihood
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Figure 4.2: PROBE builds a predictive noise model using Generalized Kernels (GK) for stereo visual odometry.
�e model can be trained with and without groundtruth egomotion.

estimation with a Gaussian noise model, we incorporate a distribution over the covariance matrix of
the Gaussian noise from a predictive model learned from training data. �is results in a Student’s t
distribution for reprojection error, and naturally yields a robust nonlinear least-squares optimization
problem. In this way, we predict, in a principled manner, how informative each visual feature is with
respect to the �nal state estimate, which allows our approach to intelligently weight observations to
produce more accurate odometry estimates.

4.2.1 Bayesian Noise Model for Visual Odometry

We adopt the motion solution for visual odometry based on reprojection errors presented in Sec-
tion 3.1.3. In brief, this approach assumes independent Gaussian errors on stereo reprojections of a
landmark from one frame, F−→c0 into a subsequent frame, F−→c1 :

ei(Tt) = ei,t = yi,c1 − f(Ttf
−1(yi,c0)) ∼ N (0,Ri,t) . (4.1)

Maximizing the likelihood of these errors is then equivalent to solving the following weighted non-
linear least squares objective for Tt ∈ SE(3) the rigid-body transform that transforms points in F−→c0

to those in F−→c1 :

T∗t = argmax
T∈SE(3)

Nt∏

i=1

p(ei,t; Tt,Ri,t) (4.2)

= argmin
T∈SE(3)

1

2

Nt∑

i=1

ei,t
T R−1

i,t ei,t. (4.3)
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With PROBE we build a model for Ri,t as a function of some useful predictor, φi,t,

Ri,t = R(φi,t). (4.4)

Each predictor can be computed based on the stereo track ({yi,c0 ,yi,c1}) and additional visual1 and
inertial cues, allowing us to model e�ects like motion blur and self-similar textures. Further, instead
of treating the covariance as a point function R(φi,t), we instead build a non-parametric model of
covariance density based on a training dataset, D,

p(Ri,t) = p(R|D,φi,t). (4.5)

We will seek the transform that then maximizes the posterior predictive distribution of the errors,
given this posterior:

T∗t = argmax
T∈SE(3)

Nt∏

i=1

∫
p(ei,t; Tt|Ri,t)p(R|D,φi,t)dR. (4.6)

Although at �rst this may seem unwieldy, we present an e�cient method for computing the posterior
and show that a particular formulation allows it to be marginalized out analytically to arrive at a simple
posterior predictive distribution with a straight-forward objective for achieving a maximum likelihood
egomotion transform.

4.2.2 Generalized Kernels

To do this, we leverage Generalized Kernel (GK) estimation (Vega-Brown et al., 2014). GK estimation
combines the bene�ts of kernel density estimation with Bayesian inference. �e basic idea is as follows.
Consider a dataset of inputs, x, targets, y, D = {(x1,y1), ..., (xN ,yN )}. We are given a new ‘test’
input x∗, and are asked to infer the likelihood of a observing a given output at this input:

p(y|x∗,D). (4.7)

If we associate a set of latent parameters,π, with each input x, and assume a known likelihood function
p(y|π), we can infer a distribution overπ and then marginalize it out to arrive at the desired likelihood

p(y|x∗,D) =

∫

π
p(y|π∗)︸ ︷︷ ︸

Known likelihood function

p(π∗|x∗,D)︸ ︷︷ ︸
Parameter posterior

dπ∗. (4.8)

�is is called the posterior predictive distribution. Using Bayes rule, we can write

p(π∗|x∗,D) ∝
∫ ( N∏

i=1

p(yi|πi)
)
p(π1:N ,π

∗|x∗,x1:N )dπ (4.9)

1Including potentially data from all four images in the pair of stereo images.
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�e technique of generalized kernels makes the assumption that the parametersπ1:N are conditionally
independent given the target parameters, π∗. �is gives the distribution:

p(π1:N ,π
∗|x∗,x1:N ) =

(
N∏

i=1

p(πi|π∗x∗,xi)
)
p(π∗|x∗), (4.10)

which combined with Equation (4.9) results in

p(π∗|x∗,D) =

(
N∏

i=1

∫
p(yi|πi)p(πi|π∗x∗,xi)dπi

)
p(π∗|x∗) (4.11)

∝
N∏

i=1

p(yi|π∗,xi,x∗)︸ ︷︷ ︸
extended likelihood

p(π∗|x∗)︸ ︷︷ ︸
Prior

, (4.12)

where Vega-Brown et al. (2014) de�ne the extended likelihood as above. �e advantage of generalized
kernels is that this extended likelihood can be wri�en as function of the known likelihood p(yi|πi)
if we assume it is the maximum entropy distribution whose Kullback–Leibler divergence from the
likelihood is bounded by the metric ρ(x∗,xi). Speci�cally, in Vega-Brown et al. (2014), it is shown that
under these assumptions, the extended likelihood must have the form:

p(y|π∗,x,x∗) ∝ p(y|π)k(x∗,x), (4.13)

where k(·, ·) is a kernel function2 that is uniquely de�ned by ρ. �e intuition behind this is that we
expect the extended likelihood to equal the known likelihood if x∗ = xi (and therefore π∗ = πi,
resulting in p(yi|π∗,xi,x∗) = p(yi|πi)) and diverge in some smooth way when x∗ 6= xi. Combining
Equation (4.11) with Equation (4.13), we arrive at an expression for the posterior over parameters as

p(π|x,D) ∝
N∏

i=1

p(y|π)k(x,xi)p(π|x), (4.14)

which can be evaluated in closed form for appropriate an appropriate likelihood and prior.
For PROBE, we will take our parameters to be covariance matrices, Ri,t, and assume Gaussian

likelihoods based on our formulation in Equation (4.1). We will then use an inverse Wishart prior for
Ri,t as this will result in an inverse Wishart posterior due to conjugacy. �e input, x, will be the vector
of predictors φ.

4.2.3 Generalized Kernels for Visual Odometry

We now present the formulation of GK estimation for VO. In order to exploit conjugacy to a Gaussian
noise model, we assume an inverse Wishart (IW) prior over positive de�nite d × d matrices (the IW
distribution has been used as a prior on covariance matrices in other robotics and computer vision

2i.e., k(x,x) = 1∀x and k(x,x′) ∈ [0, 1]∀x,x′.
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contexts, see for example, (Fitzgibbon et al., 2007)). �is distribution is de�ned by a scale matrix Ψ ∈
Rd×d � 0 and a scalar quantity called the degrees of freedom ν ∈ R > d− 1:

p (R) = IW (R; Ψ, ν) (4.15)

=
|Ψ|ν/2

2
νd
2 Γd(

ν
2 )
|R|− ν+d+1

2 exp

(
−1

2
tr
(
ΨR−1

))
.

We use the scale matrix to encode our prior estimate of the covariance, and the degrees of freedom to
encode our con�dence in that estimate. Speci�cally, if we estimate the covariance R associated with
predictor φ to be R̂ with a con�dence equivalent to seeing n independent samples of the error from
N (0, R̂), we would choose ν(φ) = n and Ψ(φ) = nR̂. Given a sequence of observations and ground
truth transformations,

D = {It,Tt}, t ∈ [1, N ] (4.16)

where
It = {yi,c0 ,yi,c1 ,φi,t} i ∈ [1, Nt], (4.17)

we can use the procedure of generalized kernel estimation as described above to infer a posterior
distribution over the covariance matrix R∗ associated with some query predictor vector φ∗:

p(R∗|D,φ∗) ∝
∏

i,t

N (ei,t|0,R∗)k(φ∗,φi,t)

× IW(R∗; Ψ(φ∗), ν(φ∗)) (4.18)

= IW(R∗; Ψ∗, ν∗). (4.19)

Here, ei,t = yi,c1− f(Ttf
−1(yi,c0)) as before. �e function k : RM ×RM → [0, 1] is a kernel function

which measures the similarity of two points in predictor space. Note also that the posterior parameters
Ψ∗ and ν∗ can be computed in closed form (see Vega-Brown et al. (2014)) as

Ψ∗ = Ψ(φ∗) +
∑

i,t

k(φ∗,φi,t)ei,t ei,t
T , (4.20)

ν∗ = ν(φ∗) +
∑

i,t

k(φ∗,φi,t). (4.21)
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If we marginalize over the covariance matrix, we �nd that the posterior predictive distribution is a
multivariate Student’s t distribution:

p(yi,c1 |Tt,yi,c0 ,D,φi,t) (4.22a)

=

∫
dRi,tN (ei,t; 0,Ri,t) IW(Ri,t; Ψ∗, ν∗) (4.22b)

= tν∗−d+1

(
ei,t; 0,

1

ν∗ − d+ 1
Ψ∗

)
(4.22c)

=
Γ(ν∗+1

2 )

Γ(ν∗−d+1
2 )

|Ψ∗|−
1
2π−

d
2

(
1 + ei,t

T Ψ∗
−1ei,t

)− ν∗+1
2
. (4.22d)

Given a new landmark and predictor vector, we can infer a noise model by evaluating Equations (4.20)
and (4.21). In order to accelerate this computation, it is helpful to choose a kernel function with �nite
support: that is, k(φ,φ′) = 0 if ‖φ − φ′‖2 > γ for some γ. �en, by indexing our training data in a
spatial index such as a k-d tree, we can identify the subset of samples relevant to evaluating the sums
in eqs. (4.20) and (4.21) in O(logN + logNt) time. Algorithm 1 describes the procedure for building
this model.

Algorithm 1 Build the covariance model given a sequence of observations, D.
function BuildCovarianceModel(D)

Initialize an empty spatial indexM
for all It,Tt in D do

for all {yi,c0 ,yi,c1 ,φi,c0} in It do
ei,t = yi,c1 − f(Ttf

−1(yi,c0))
Insert φi,t intoM and store ei,t at its location

end for
end for
returnM

end function

Once we have inferred a noise model for each landmark in a new image pair, the maximum likeli-
hood optimization problem is given by

T∗t = argmin
Tt∈SE(3)

Nt∑

i=1

(νi,t + 1) log
(

1 + ei,t
T Ψ−1

i,t ei,t

)
. (4.23)

�e �nal optimization problem thus emerges as a nonlinear least squares problem with a rescaled
Cauchy-like loss function, with error term ei,t

T ( 1
νi,t+1Ψi,t)

−1ei,t and outlier scale νi,t + 1. �is is
a common robust loss function which is approximately quadratic in the error for ei,t

T Ψ−1
i,t ei,t �

νi,t + 1, but grows only logarithmically for ei,t
T Ψ−1

i,t ei,t � νi,t + 1. It follows that in the limit
of large νi,t—in regions of predictor space where there are many relevant samples—our optimization
problem becomes the original least-squares optimization problem.

Solving nonlinear optimization problems with the form of Equation (4.23) is a well-studied and
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well-understood task, and so�ware packages to perform this computation are readily available. Algo-
rithm 2 describes the procedure for computing the transform between a new image pair, treating the
optimization of Equation (4.23) as a subroutine.

Algorithm 2 Compute the transform between two images, given a set, It, of landmarks and predictors
extracted from an image pair and a covariance modelM.
function ComputeTransform(It,M)

for all {yi,c0 ,yi,c1 ,φi,c0} in It do
Ψ, ν ← InferNoiseModel(M, φi,t)
g(T) = yi,c1 − f(Tf−1(yi,c0))

L ← L+ (ν + 1) log
(

1 + g(T)T Ψ−1g(T)
)

end for
return argminT∈SE(3) L(T)

end function
function InferNoiseModel(M, φ∗)

neighbors← GetNeighbors(M,φ∗, ρ) . ρ is the radius of support of kernel k
Ψ∗ ← Ψ(φ∗)
ν∗ ← ν(φ∗)
for (φi,t, ei,t) in Neighbors do

Ψ∗ ← Ψ∗ + k(φ∗,φi,t)ei,t ei,t
T

ν∗ ← ν∗ + k(φ∗,φi,t)
end for
return Ψ∗, ν∗

end function

We observe that Algorithm 2 is predictively robust, in the sense that it uses past experiences not
just to predict the reliability of a given image landmark, but also to introspect and estimate its own
knowledge of that reliability. Landmarks which are not known to be reliable are trusted less than
landmarks which look like those which have been observed previously, where “looks like” is de�ned
by our prediction space and choice of kernel.

4.2.4 Inference without ground truth

Algorithm 1 requires access to the true transform between training image pairs. In practice, such
ground truth data may be di�cult to obtain. In these cases, we can instead formulate a likelihood
model p(D′|T1, . . . ,Tt), where D′ = {It} is a dataset consisting only of landmarks and predictors
for each training image pair. We can construct a model for future queries by inferring the most likely
sequence of transforms for our training images. �e likelihood has the following factorized form:

p(D′|T1:T ) ∝
∫ ∏

i,t

dRi,t p(yi,c1 |yi,c0 ,Tt,Ri,t)p(Ri,t|φi,t,D,T1:T ). (4.24)

We cannot easily maximize this likelihood, since marginalizing over the noise covariances removes the
independence of the transforms between each image pair. To render the optimization tractable, we fol-
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low previous work (Vega-Brown and Roy, 2013) and formulate an iterative expectation-maximization
(EM) procedure. Given an estimate T

(n)
t of the transforms, we can compute the expected log-likelihood

conditioned on our current estimate:

Q(T1:T |T(n)
1:T ) =

∫ 
∏

i,t

dRi,t p(Ri,t|D\i,t,T(n)
1:T )


 log

∏

i,t

p(yi,c1 |yi,c0 ,Tt,Ri,t). (4.25)

�is has the e�ect of rendering the likelihood of each transform to be estimated independently. More-
over, the expected log-likelihood can be evaluated in closed form:

Q(T1:T |T(n)
1:T ) ∼= −1

2

T∑

t=1

Nt∑

i=1

ei,t
T

(
1

ν
(n)
i,t

Ψ
(n)
i,t

)−1

ei,t. (4.26)

�e symbol ∼= is used to indicate equality up to an additive constant. We can iteratively re�ne our
estimate by maximizing the expected log-likelihood

T
(n+1)
1:T = argmax

T1:T∈SE(3)T
Q(T1:T |T(n)

1:T ). (4.27)

Due to the additive structure of Q(T1:T |T(n)
1:T ), this takes the form of T separate nonlinear least-

squares optimizations:

T
(n+1)
t = argmin

Tt∈SE(3)

Nt∑

i=1

ei,t
T

(
1

ν
(n)
i,t

Ψ
(n)
i,t

)−1

ei,t. (4.28)

Algorithm 3 describes the process of training a model without ground truth. We refer to this process
as PROBE-GK-EM, and distinguish it from PROBE-GK-GT (Ground Truth). We note that the sequence
of estimated transforms, T

(n)
1:T , is guaranteed to converge to a local maxima of the likelihood function

(Dempster et al., 1977). It is also possible to use a robust loss function (Equation (4.23)) in place of
Equation (4.28) during EM training. Although not formally motivated by the derivation above, this
approach o�en leads to lower test errors in practice. Characterizing when and why this robust learning
process outperforms its non-robust alternative is outside the scope of this dissertation.

4.3 Prediction Space

A crucial component of our technique is the choice of the vector of predictors φ. In practice, feature
tracking quality is o�en degraded by a variety of e�ects such as motion blur, moving objects, and
textureless or self-similar image regions. �e challenge is in determining predictors that account for
such e�ects without requiring excessive computation. In our implementation, we use the following
predictors, but stress that the choice of predictors can be tailored to suit particular applications and
environments:
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Algorithm 3 Build the covariance model without ground truth given a sequence of observations, D′,
and an initial odometry estimate T

(0)
1:T .

function BuildCovarianceModel(D′, T
(0)
1:T )

Initialize an empty spatial indexM
for all It in D′ do

for all {yi,c0 ,yi,c1 ,φi,t} in It do
ei,t = yi,c1 − f(T

(0)
t f−1(yi,c0))

Insert φi,t intoM and store ei,t at its location
end for

end for
repeat

for all It in D′ do
for all {yi,c0 ,yi,c1 ,φi,t} in It do

Ψ, ν ← InferNoiseModel(M,φi,t)
g(T) = yi,c1 − f(Tf−1(yi,c0))

L ← L+ g(T)T
(

1
νΨ
)−1

g(T)
end for
Tt ← argminT∈SE(3) L(T)

ei,t = yi,c1 − f(T
(0)
t f−1(yi,c0))

Update the error stored at φi,t inM to ei,t
end for

until converged
returnM

end function
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1. Angular velocity and linear acceleration magnitudes

2. Local image entropy

3. Blur (quanti�ed by the blur metric of Crete et al. (2007))

4. Optical �ow variance score

5. Image frequency composition

We discuss each of these predictors in turn.

4.3.1 Angular velocity and linear acceleration

While most of the predictors in our system are computed directly from image data, the magnitudes
of the angular velocities and linear accelerations reported by an IMU (if available) are in themselves
good predictors of image degradation (e.g., image blur) and hence poor feature tracking. We do not
explicitly correct for bias in linear accelerations because we expect real motion-induced acceleration
to trump bias at the timescales of our test trials. As a result, there is virtually no computational cost
involved in incorporating these quantities as predictors.

4.3.2 Local image entropy

Entropy is a statistical measure of randomness that can be used to characterize the texture in an image
or patch. Since the quality of feature detection is strongly in�uenced by the strength of the texture in
the vicinity of the feature point, we expect the entropy of a patch centered on the feature to be a good
predictor of its quality. We evaluate the entropy S in an image patch by sorting pixel intensities into
N bins and computing

S = −
N∑

i=1

ci log2(ci), (4.29)

where ci is the number of pixels counted in the ith bin.

4.3.3 Blur

Blur can arise from a number of sources including motion, dirty lenses, and sensor defects. All of
these have deleterious e�ects on feature tracking quality. To assess the e�ect of blur in detail, we
performed a separate experiment. We recorded images of 32 interior corners of a standard checker-
board calibration target using a low frame-rate (20 FPS) Skybotix VI-Sensor stereo camera and a high
frame-rate (125 FPS) Point Grey Flea3 monocular camera rigidly connected by a bar (Figure 4.3). Prior
to the experiment, we determined the intrinsic and extrinsic calibration parameters of our rig using
the Kalibr3 package Furgale et al. (2013). �e apparatus underwent both slow and fast translational
and rotational motion, which induced di�erent levels of motion blur as quanti�ed by the blur metric
proposed by Crete et al. (2007).



4.3. Prediction Space 41

Figure 4.3: �e Skybotix VI-Sensor, Point Grey Flea3, and checkerboard target used in our motion blur experi-
ments.
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Figure 4.4: Reprojection error of checkerboard corners triangulated from the VI-Sensor and reprojected into
the Flea3.We distinguish between high and low blur by thresholding the blur metric Crete et al. (2007).
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Figure 4.5: E�ect of blur on reprojection and tracking error for the slow-then-fast checkerboard dataset. We
distinguish between high and low blur by thresholding the blur metric Crete et al. (2007). �e variance in both
errors increases with blur.
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We detected checkerboard corners in each camera at synchronized time steps, computed their 3D
coordinates in the VI-Sensor frame, then reprojected these 3D coordinates into the Flea3 frame. We
then computed the reprojection error as the distance between the reprojected image coordinates and
the true image coordinates in the Flea3 frame. Since the Flea3 operated at a much higher frame rate
than the VI-Sensor, it was less susceptible to motion blur and so we treated its observations as ground
truth. We also computed a tracking error by comparing the image coordinates of checkerboard corners
in the le� camera of the VI-Sensor computed from both KLT tracking (Lucas and Kanade, 1981) and
re-detection.

Figure 4.5 shows histograms and ��ed normal distributions for both reprojection error and track-
ing error. From these distributions we can see that the errors remain approximately zero-mean, but
that their variance increases with blur. �is result is compelling evidence that the e�ect of blur on
feature tracking quality can be accounted for by scaling the feature covariance matrix by a function
of the blur metric.

4.3.4 Optical �ow variance

As an e�cient way to detect areas with potentially moving objects, we compute a score for each feature
based on the ratio of two variances: (1) the variance in optical �ow vectors in a small region around
the feature and (2) the variance in �ow vectors of a larger region. Intuitively, if the �ow variance in
the small region di�ers signi�cantly from that in the larger region, we might expect the feature in
question to belong to a moving object, and we would therefore like to trust the feature less. Since we
consider only the variance in optical �ow vectors, we expect this predictor to be reasonably invariant
to scene geometry.

We compute this optical �ow variance score according to

log

(
σ̄2
s

σ̄2
l

)
, (4.30)

where σ̄2
s , σ̄

2
l are the means of the variance of the vertical and horizontal optical �ow vector com-

ponents in the small and large regions respectively. Figure 4.6 shows sample results of this scoring
procedure for two images in the KITTI dataset. Our optical �ow variance score aids in identifying
moving objects such as vehicles and cyclists in diverse scenes.

4.3.5 Image frequency composition

Reliable feature tracking is o�en di�cult in textureless or self-similar environments due to low feature
counts and false matches. We detect textureless and self-similar image regions by computing the Fast
Fourier Transform (FFT) of each image and analyzing its frequency composition. For each feature
location, we compute a coe�cient for the low- and high-frequency regimes of the FFT. Figure 4.7 shows
the result of the high-frequency version of this predictor on a sample image from the KITTI dataset.

3https://github.com/ethz-asl/kalibr

https://github.com/ethz-asl/kalibr
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Figure 4.6: �e optical �ow variance predictor can help in detecting moving objects. Red circles correspond to
higher values of the optical �ow variance score (i.e., features more likely to belong to a moving object).

Figure 4.7: A high-frequency predictor can distinguish between regions of high and low texture such as foliage
and shadows. Green indicates higher values.

Our high-frequency predictor e�ectively distinguishes between textureless regions (e.g., shadows and
roads) and texture-rich regions (e.g., foliage).

4.4 Experiments

To validate PROBE-GK, we used three types of data: synthetic simulations, the KITTI dataset, and our
own experimental data collected at the University of Toronto.

4.4.1 Synthetic

First, we formulated a synthetic dataset wherein a stereo camera traverses a circular path observing
2000 randomly distributed point features. We added Gaussian noise to each of the ideal projected
pixel co-ordinates for visible landmarks at every step. We varied the noise variance as a function of
the vertical pixel coordinate of the feature in image space. In addition, a small subset of the landmarks
received an error term drawn from a uniform distribution to simulate the presence of outliers. �e
prediction space was composed of the vertical and horizontal pixel locations in each of the stereo
cameras.
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Figure 4.8: Our synthetic world. A stereo camera rig moves through a world with 2000 point features.

We simulated independent training and test traversals, where the camera moved for 30 and 60
seconds respectively (at a forward speed of 3 meters per second for �nal path lengths of 90 and 180
meters). Figure 4.9 and Table 4.1 document the qualitative and quantitative comparisons of PROBE-
GK (trained with and without ground-truth) against two baseline stereo odometry frameworks. Both
baseline estimators were implemented based on the reprojection-error-based VO pipeline described
in Chapter 3. �e �rst utilized �xed covariances for all reprojection errors, while the second used a
modi�ed robust cost (i.e. M-estimation) based on Student’s t weighting, with ν = 5 (as suggested in
Kerl et al. (2013)). �ese benchmarks served as baseline estimators (with and without robust costs)
that used �xed covariance matrices and did not include a predictive component.

Using PROBE-GK with ground truth data for training, we signi�cantly reduced both the translation
and rotational Average Root Mean Squared Error (ARMSE) by approximately 50%. In our synthetic
data, the Expectation Maximization approach was able to achieve nearly identical results to the ground-
truth-aided model within 5 iterations.

4.4.2 KITTI

To evaluate PROBE-GK on real environments, we trained and tested several models on the KITTI Vi-
sion Benchmark suite (Geiger et al., 2013), a series of datasets collected by a car out��ed with a number
of sensors driven around di�erent parts of Karlsruhe, Germany. Within the dataset, ground truth pose
information is provided by a high grade inertial navigation unit which also fuses measurements from
di�erential GPS. Raw data is available for di�erent types of environments through which the car was
driving; for our work, we focused on the city, residential and road categories (Figure 4.10). From each
category, we chose two separate trials for training and testing.

Figures 4.11a to 4.11c show typical results; Table 4.1 presents a quantitative comparison. PROBE
GK-GT produced signi�cant reductions in ARMSE, reducing translational ARMSE by as much as 80%.
In contrast, GK-EM showed more modest improvements; this is unlike our synthetic experiments,



4.4. Experiments 45

0 20 40 60 80 100 120 140 160 180

R
M

S
E

 [
m

]

0

2

4

6

8

10
Translation Error

Static Covariance
Static M-Estimator
GK-GT
GK-EM

Distance Travelled [m]
0 20 40 60 80 100 120 140 160 180

R
M

S
E

 [
ra

d
]

0

0.05

0.1

0.15

0.2

0.25

0.3
Rotational Error

Figure 4.9: A comparison of translational and rotational Root Mean Square Error on simulated data (RMSE) for
four di�erent stereo-visual odometry pipelines: two baseline bundle adjustment procedures with and without a
robust Student’s t cost with a �xed and hand-tuned covariance and degrees of freedom (M-Estimation), a robust
bundle adjustment with covariances learned from ground truth with algorithm 1 (GK-GT), and a robust bundle
adjustment using covariances learned without ground truth using expectation maximization, with algorithm 3
(GK-EM). Note in this experiment, the RMSE curves for GK-GT and GK-EM very nearly overlap. �e overall
translational and rotational ARMSE values are shown in Table 4.1.

City Residential Road

Figure 4.10: �e KITTI dataset contains three di�erent environments. We validate PROBE-GK by training on
each type and testing against a baseline stereo visual odometry pipeline.
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Figure 4.11: RMSE comparison of stereo VO estimators evaluated on data in the KITTI odometry benchmark.
See Table 4.1 for a quantitative summary.
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Table 4.1: Comparison of average root mean squared errors (ARMSE) for rotational and translational compo-
nents. Each trial is trained and tested from a particular category of raw data from the synthetic and KITTI
datasets.

Trans. ARMSE [m] Rot. ARMSE [rad]
Length [m] Fixed Covar. Static M-Estimator GK-GT GK-EM Fixed Covar. Static M-Estimator GK-GT GK-EM

Synthetic 180 3.87 2.49 1.59 1.66 0.18 0.13 0.070 0.073
City 332.9 3.84 2.99 1.69 2.87 0.032 0.021 0.0046 0.018
Residential 714.1 13.48 9.37 1.97 8.80 0.068 0.050 0.013 0.044
Road 723.8 17.69 9.38 5.24 8.87 0.060 0.027 0.015 0.024

RTK-GPS  
Base  

Station

Clearpath 
Husky Rover

Pointgrey XB3  
Stereo Camera

(a) Our experimental apparatus: a Clearpath Husky rover
out��ed with a PointGrey XB3 stereo camera and a di�er-
ential GPS receiver and base station.
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(b) GPS ground truth for 5 experimental trials collected near
the UTIAS Mars Dome. Each trial is approximately 250 m
long.

Figure 4.12: Our experimental setup.

where both GK-EM and GK-GT achieved similar performance. We note that although our simulated
data is drawn from a mixture of Gaussian distributions, the underlying noise distribution for real data
may be far more complex. With no ground truth, EM has to jointly optimize the camera poses and
sensor uncertainty. It is unclear whether this is feasible in the general case with no ground truth
information.

Further, we observe that the performance of PROBE-GK depends on the similarity of the training
data to the �nal test trials. A characteristic training dataset was important for consistent improvements
on test trials.

4.4.3 UTIAS

To further investigate the capability of our EM approach, we evaluated PROBE-GK on experimental
data collected at the University of Toronto Institute for Aerospace Studies (UTIAS). For this exper-
iment, we drove a Clearpath Husky rover out��ed with an Ashtech DG14 Di�erential GPS, and a
PointGrey XB3 stereo camera around the MarsDome (an indoor Mars analog testing environment) at
UTIAS (Figure 4.12a) for �ve trials of a similar path. Each trial was approximately 250 m in length and
we made an e�ort to align the start and end points of each loop. We used the wide baseline (25 cm)
of the XB3 stereo camera to record the stereo images. �e approximate trajectory for all 5 trials, as
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Figure 4.13: Training without ground truth using PROBE-GK-EM on a 250.2m path around the Mars Dome at
UTIAS. �e likelihood of the data increases with each iteration, and the loop closure error decreases, improving
signi�cantly from a baseline static M-estimator.

Table 4.2: Comparison of loop closure errors for 4 di�erent experimental trials with and without a learned
PROBE-GK-EM model.

Loop Closure Error [m]
Trial Path Length [m] PROBE-GK-EM Static M-Estimator

2 250.3 3.88 8.07
3 250.5 3.07 6.64
4 205.4 2.81 7.57
5 249.9 2.34 7.75
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recorded by GPS, is shown in Figure 4.12b. Note that the GPS data was not used during training, and
only recorded for reference.

For the prediction space in our experiments, we mimicked the KITTI experiments, omi�ing inertial
magnitudes as no inertial data was available. We trained PROBE-GK without ground truth, using the
Expectation Maximization approach. Figure 4.13 shows the likelihood and loop closure error as a
function of EM iteration.

�e EM approach indeed produced signi�cant error reductions on the training dataset a�er just
a few iterations. Although it was trained with no ground truth information, our PROBE-GK model
was used to produce signi�cant reductions in the loop closure errors of the remaining 4 test trials.
�is reinforced our earlier hypothesis: the EM method works well when the training trajectory more
closely resembles the test trials (as was the case in this experiment). Table 4.2 lists the statistics for
each test.

Remark (Limitations and Extensions). �e primary limitations of PROBE arise due to the manually-
selected nature of the predictors and the hyper-parameters that govern the inference process (e.g., the
parameters of the IW prior and the selection of an appropriate kernel). Potential extensions include

1. the use of modern convolutional neural network to de�ne a bespoke prediction space for a given
environment,

2. an investigation into the amount of training data required to accurately model certain e�ects,
and

3. an inquiry into why the expectation-maximization ground-truth-free approach does not perform
as well on real data as it does in simulations.

4.5 Summary

�is chapter presented Predictive Robust Estimation (PROBE) which applied Generalized Kernel esti-
mation to create a pseudo-sensor to improve uncorrelated and static Gaussian error models typically
employed in stereo odometry. By building a non-parametric predictive model for the density of repro-
jection errors, we derived a robust least squares objective whose parameters were predicted based on
training data. Our novel contributions included,

1. a probabilistic model for indirect stereo visual odometry, leading to a predictive robust algorithm
for inference on that model,

2. an e�cient approach to constructing the robust algorithm based on Generalized Kernel (GK)
estimation,

3. a procedure for training our model using pairs of stereo images with known relative transforms,
and
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4. an iterative, expectation-maximization approach to train our GK model when the relative ground
truth egomotion was unavailable.



Chapter 5

Learning Sun Direction with
Uncertainty

He stepped down, avoiding any long look at
her as one avoids long looks at the sun, but
seeing her as one sees the sun, without
looking.

Leo Tolstoy, Anna Karenina

Building on the results of PROBE, wherein we showed that it is possible to extract useful uncer-
tainty information from images, we turn to the problem of constructing a pseudo-sensor that can infer
a concrete geometric quantity that could be used to improve egomotion estimates. Speci�cally, in this
chapter, we address the problem of replacing a costly dedicated hardware-based sun-sensor with a sun
pseudo-sensor. We show, through extensive experiments, that it is possible to train a deep parametric
model (a Bayesian Convolutional Neural Network, or BCNN) to act as a virtual sun sensor that can
predict the direction of the sun from a single RGB image where the sun is not directly observed. Fur-
ther, we leverage recent advances in the theory of approximate variational inference of deep networks
to extract uncertainty estimates for each prediction.

Remark (Associated Publications). �is project was a collaboration with Lee Clement. Lee lead the
integration of sun information into a visual odometry pipeline, while I lead the design and implemen-
tation of the learning architecture. It is associated with three publications. �e �rst publication was
exploratory work on (non-probabilistic) virtual sun sensors lead by Lee,

1. Clement, L., Peretroukhin, V., and Kelly, J. (2017). Improving the accuracy of stereo visual odom-
etry using visual illumination estimation. In Kulic, D., Nakamura, Y., Khatib, O., and Venture, G.,
editors, 2016 International Symposium on Experimental Robotics, volume 1 of Springer Proceed-
ings in Advanced Robotics, pages 409–419. Springer International Publishing, Berlin Heidelberg.
Invited to Journal Special Issue,

51
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1. Pre 
processing

2. Data 
association

3. Motion 
estimation

T1,0
<latexit sha1_base64="+WohBxFr0KhcNmTmoMZghNdGor4="></latexit>

Virtual Sun Sensor
Sun-BCNN

Output: 
Sun Direction 

(with uncertainty)

Input: 
RGB Image

Figure 5.1: Sun-BCNN is a learned virtual sun sensor that outputs sun direction with an associated uncertainty
based on a single RGB image. We use this as a source of orientation information within a privileged reference
frame.

while the la�er two publications were a joint collaboration where I developed and investigated the
BCNN formulation and we collaborated on the experimental validation,

2. Peretroukhin, V., Clement, L., and Kelly, J. (2017). Reducing dri� in visual odometry by infer-
ring sun direction using a bayesian convolutional neural network. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA’17), pages 2035–2042, Singapore,

3. Peretroukhin, V., Clement, L., and Kelly, J. (2018). Inferring sun direction to improve visual
odometry: A deep learning approach. International Journal of Robotics Research, 37(9):996–1016.

�is chapter is largely a reproduction of the la�er journal publication which summarizes the approach,
with additional elaboration on the pseudo-sensor architecture.

5.1 Motivation

�e accumulated error, or dri�, of visual egomotion estimation can be limited by incorporating external
global information such as observations of known landmarks, loop closures, or position updates from
the global navigation satellite system (GNSS). In many situations, however, a globally consistent map
may be unavailable or prohibitively expensive to compute, loop closures may not occur, or GNSS
information may be unavailable or inaccurate (e.g., on the surface of Mars). In such cases, outdoor
navigation can still extract external information from measurements of celestial objects (c.f. early
maritime navigation described in Chapter 1). During the day, for example, observations of the sun can
provide global orientation information since the sun’s apparent motion in the sky is well-described by
ephemeris models.
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For visual odometry, the addition of global orientation information can limit the growth of dri�
error to be linear rather than superlinear with distance traveled (Olson et al., 2003). Accordingly,
sun-based orientation corrections have been successfully used to improve VO estimates in planetary
analogue environments (Furgale et al., 2011; Lambert et al., 2012) as well as on board the Mars Ex-
ploration Rovers (MERs) (Eisenman et al., 2002; Maimone et al., 2007). In particular, Lambert et al.
(2012) showed that incorporating sun sensor and inclinometer measurements directly into the motion
estimation pipeline can signi�cantly reduce VO dri� over long trajectories.

In this work, we build a virtual pseudo-sensor that can replicate the performance of a dedicated
sun-sensor while requiring only the image stream that is already being used to compute VO. In par-
ticular, we leverage recent advances in approximate variational inference of Bayesian Convolutional
Neural Networks to demonstrate how we can build and train a deep model capable of inferring the
direction of the sun from a single RGB image, and moreover, produce a covariance estimate for each
observation.

�e remainder of this chapter begins with a discussion of related work, followed by an overview of
the theory underlying BCNNs and a discussion of our model architecture, implementation, and train-
ing procedure. We then outline our chosen visual odometry pipeline, which is based is an adapted
version of the pipeline describe in Chapter 3, and describe how observations of the sun can be incor-
porated directly into the motion estimation problem following the technique of Lambert et al. (2012).
Finally, we present several sets of experiments designed to test and validate both Sun-BCNN and our
sun-aided VO pipeline in variety of environments. �ese include experiments on 21.6 km of urban
driving data from the KITTI odometry benchmark training set (Geiger et al., 2013), as well as a 10 km
traverse through a planetary analogue site taken from the Devon Island Rover Navigation Dataset
collected in a planetary analogue site in the Canadian High Arctic (Furgale et al., 2012). �en, we
investigate the possibility of model generalization between di�erent cameras and environments, and
further explore the sensitivity of Sun-BCNN to cloud cover during training and testing, using data
from the Oxford Robotcar Dataset (Maddern et al., 2016). Finally, we examine the impact of di�erent
methods for computing the mean and covariance of a norm-constrained vector on the accuracy and
consistency of the estimated sun directions.

5.2 Related Work

Hardware sun sensors have been used to improve the accuracy of VO in planetary analogue environ-
ments (e.g., the Sinclair Interplanetary SS-411 sun sensor used by Furgale et al. (2011) and Lambert
et al. (2012)), while the MERs articulated their Pancam apparatus to directly image the sun (Maimone
et al., 2007; Eisenman et al., 2002). More recently, so�ware-based alternatives have been developed that
can estimate the direction of the sun from a single image, making sun-aided navigation possible with-
out additional sensors or a specially-oriented camera (Clement et al., 2017). Some of these methods
have been based on hand-cra�ed illumination cues such as shadows and variation in sky brightness
(Lalonde et al., 2011; Clement et al., 2017), while others have a�empted to learn such cues from data
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using deep Convolutional Neural Networks (CNNs) (Ma et al., 2016).
Convolutional Neural Networks (CNNs) have been applied to a wide range of classi�cation, seg-

mentation, and learning tasks in computer vision (LeCun et al., 2015). Recent work has shown that
CNNs can learn orientation information directly from images by modifying the loss functions of exist-
ing discrete classi�cation-based CNN architectures into continuous regression losses (Ma et al., 2016;
Kendall et al., 2015; Kendall and Cipolla, 2016). Despite their success in improving prediction accu-
racy, most existing CNN-based models do not report uncertainty estimates, which are important in
the context of data fusion.

For classi�cation, it is possible to restrict CNN model outputs to a certain range (e.g., using a
so�max function) and interpret these values as the model’s con�dence in its output. As Gal (2016)
noted, however, this can be misleading because these values can be unjusti�ably large for test points
far away from training data. To address this, Gal and Ghahramani (2016b) showed that it is possible to
compute a be�er estimate of model uncertainty for classi�cation and regression tasks, with only minor
modi�cations to existing CNN architectures. An early application of this uncertainty quanti�cation
was presented by Kendall and Cipolla (2016) who used it to improve their prior work (Kendall et al.,
2015) on camera pose regression.

We build on previous work by Clement et al. (2017), who demonstrated empirically that techniques
for single-image sun estimation based on hand-cra�ed models (Lalonde et al., 2011) and Convolu-
tional Neural Networks (CNNs) (Ma et al., 2016) could be incorporated into a stereo visual odometry
pipeline to reduce estimation error in the manner of Lambert et al. (2012). We also build on the work
of Peretroukhin et al. (2017), who presented preliminary experimental results comparing Sun-BCNN
against the method of Lalonde et al. (2011) and its VO-informed variant (Clement et al., 2017) as well
as the Sun-CNN of Ma et al. (2016) on the KITTI odometry benchmark (Geiger et al., 2013), both in
terms of raw measurement accuracy and in terms of their impact on VO accuracy.

While our method is similar in spirit to the work of Ma et al. (2016), who built a CNN-based
sun sensor as part of a relocalization pipeline, our model makes three important improvements: 1)
in addition to a point estimate of the sun direction, we output a principled covariance estimate that
is incorporated into our estimator; 2) we produce a full 3D sun direction estimate with azimuth and
zenith angles that is be�er suited to 6-DOF robot pose estimation problems (as opposed to only the
azimuth angle and 3-DOF estimator used by Ma et al. (2016)); and 3) we incorporate the sun direction
covariance into a VO estimator that accounts for growth in pose uncertainty over time (unlike Clement
et al. (2017)). Furthermore, our Bayesian CNN includes a dropout layer a�er every convolutional and
fully connected layer (as outlined by Gal and Ghahramani (2016b) but not done by Kendall and Cipolla
(2016)).

5.3 Sun-Aided Stereo Visual Odometry

For this work, we adopt a sliding window sparse stereo VO technique (derived from the frame-to-
frame pipeline described in Chapter 3) that has been used in a number of successful mobile robotics
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applications (Cheng et al., 2006; Furgale and Barfoot, 2010; Geiger et al., 2011; Kelly et al., 2008). Our
task is to estimate a window of SE(3) poses {Tk1,0,Tk1+1,0, . . . ,Tk2−1,0,Tk2,0} expressed in a base
coordinate frame F−→0, given a prior estimate of the transformation Tk1,0. We accomplish this by
tracking keypoints across pairs of stereo images and computing an initial guess for each pose in the
window using frame-to-frame point cloud alignment, which we then re�ne by solving a local bundle
adjustment problem over the window. In our experiments we choose a window size of two, which
we observed to provide good VO accuracy at low computational cost. We select the initial pose T1,0

to be the �rst ground truth pose such that F−→0 is a local East-North-Up (ENU) coordinate system
with its origin at the �rst GPS position. We note that this requires some source of initial orientation
information—e.g., a measurement of the local gravity vector and a magnetic heading.

5.3.1 Observation Model

We assume that incoming stereo images have been undistorted and recti�ed in a pre-processing step,
and model the stereo camera as a pair of perfect pinhole cameras with focal lengths fu, fv and principal
points (cu, cv), separated by a �xed and known baseline b (see Section 3.1.2).

If we take pj0 to be the homogeneous 3D coordinates of keypoint j, expressed in our chosen base
frame F−→0, we can transform the keypoint into the camera frame at pose k to obtain pjk = Tk,0p

j
0 =

[
pjk,x pjk,y pjk,z 1

]T
. Our observation model g (·) (de�ned with disparity, unlike the function f(·)

in Section 3.1.2) can then be formulated as

yk,j = g
(
pjk

)
=
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 , (5.1)

where (u, v) are the keypoint coordinates in the le� image and d is the disparity in pixels.

5.3.2 Sliding Window Bundle Adjustment

Similar to PROBE, we use the open-source viso2 package (Geiger et al., 2011) to detect and track key-
points between stereo image pairs. Based on these keypoint tracks, a three-point Random Sample
Consensus (RANSAC) algorithm (Fischler and Bolles, 1981) generates an initial guess of the interframe
motion and rejects outlier keypoint tracks by thresholding their reprojection error. We compound
these pose-to-pose transformation estimates through our chosen window and re�ne them using a lo-
cal bundle adjustment, which we solve using the nonlinear least-squares solver Ceres (Agarwal et al.,
2016). �e objective function to be minimized can be wri�en as

J = Jreprojection + Jprior, (5.2)
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where

Jreprojection =

k2∑

k=k1

J∑

j=1

eT
yk,j

R−1
yk,j

eyk,j (5.3)

and
Jprior = eT

T̂k1,0
R−1

T̂k1,0
eT̂k1,0

. (5.4)

�e quantity eyk,j = ŷk,j − yk,j represents the reprojection error of keypoint j for camera pose
k, with Ryk,j being the covariance of these errors. �e predicted measurements are given by ŷk,j =

g
(
T̂k,0p̂

j
0

)
, where T̂k,0 and p̂j0 are the estimated poses and keypoint positions in base frame F−→0.

�e cost term Jprior imposes a normally distributed prior Ťk1,0 on the �rst pose in the current
window, based on the estimate of this pose in the previous window. �e error in the current estimate
T̂k1,0 of this pose compared to the prior can be computed via the SE(3) matrix logarithm as eŤk1,0

=

Log
(
Ť
−1
k1,0T̂k1,0

)
∈ R6. �e 6× 6 matrix RŤk1,0

is the covariance associated with Ťk1,0 in its local
tangent space, and is obtained as part of the previous window’s bundle adjustment solution. �is
prior term allows consecutive windows of pose estimates to be combined in a principled way that
appropriately propagates global pose uncertainty from window to window, which is essential in the
context of optimal data fusion.

5.4 Orientation Correction

In order to combat dri� in the VO estimate produced by accumulated orientation error, we adopt the
technique of Lambert et al. (2012) to incorporate absolute orientation information from the sun directly
into the estimation problem. We assume the initial camera pose and its timestamp are available from
GPS-INS and use them to determine the global direction of the sun s0, expressed as a 3D unit vector,
from ephemeris data. We de�ne the world frame F−→0 to be a local ENU coordinate system with the
initial GPS position as its origin. At each timestep we update s0 by querying the ephemeris model using
the current timestamp and the initial camera pose, allowing our model to account for the apparent
motion of the sun over long trajectories.

By transforming the global sun direction into each camera frame F−→k in the window, we obtain
predicted sun directions ŝk = T̂k,0s0, where T̂k,0 is the current estimate of camera pose k in the base
frame. We compare the predicted and estimated sun directions to introduce an additional error term
into the bundle adjustment cost function (cf. Equation (5.2)):

J = Jreprojection + Jprior + Jsun, (5.5)

where

Jsun =

k2∑

k=k1

eT
sk

R−1
sk

esk , (5.6)

and Jreprojection and Jprior are de�ned in Equations (5.3) and (5.4), respectively. �is additional term
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constrains the orientation of the camera, which helps limit dri� in the VO result due to orientation
error (Lambert et al., 2012).

Since sk is constrained to be unit length, there are only two underlying degrees of freedom. We
therefore de�ne f (·) to be a function that transforms a 3D unit vector in camera frame F−→k to a zenith-
azimuth parametrization: [

θ

φ

]
= f (sk) =

[
acos (−sk,y)

atan2 (sk,x, sk,z)

]
(5.7)

where sk = [ sk,x sk,y sk,z ]T. We can then de�ne the term esk = f (ŝk) − f (sk) to be the error in
the predicted sun direction, expressed in azimuth-zenith coordinates, and Rsk to be the covariance of
these errors. While Rsk would generally be treated as an empirically determined static covariance, in
our approach we use the per-observation covariance computed using Equation (5.29), which allows us
to weight each observation individually according to a measure of its intrinsic quality. In practice, we
also a�empt to mitigate the e�ect of outlier sun predictions by applying a robust Huber loss to the sun
measurements in our optimizer.

5.5 Bayesian Convolutional Neural Networks

Recall from Section 2.6.4 that dropout (Figure 5.2) is a stochastic regularization technique that was
originally designed to improve the generalization performance of deep networks. Dropout works by
randomly ‘turning o�’ certain inputs of layers to simulate an ensemble of smaller networks during
training. Gal and Ghahramani (2016a) identi�ed a link between applying dropout at test-time given
a network trained with dropout (through a technique called Monte Carlo dropout, or MC dropout) and
approximate variational inference for a particular type of Bayesian Neural Network. In this work,
we leverage this insight to build a Bayesian Convolutional Neural Network through MC dropout. To
elucidate the intuition behind this technique, we �rst review variational inference and then outline its
connection to the technique of dropout.

5.5.1 Bayesian Modelling and Variational Inference

Consider the goal of generating a function f(x;π) that maps inputs x to outputs y as a function of
parameters π. Recall from Chapter 4 that in Bayesian inference we de�ne a prior on the space of
parameters p(π) and a likelihood function that de�nes how likely we are to observe y given an input
x and parameters π, p(y|x,π). For example, in regression problems, we o�en de�ne the Gaussian
likelihood

p(y|x,π) = N (f(x;π), τ−11) (5.8)

where τ is a model precision. Given a dataset D = {X,Y} = {{x1, ...xN}, {y1, ...,yN )}}, the
Bayesian formulation seeks a posterior over the parameters π:

p(π|D) =
p(Y|X,π)p(π)

p(Y|X)
(5.9)
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(a) Standard fully-connected neural network. (b) A neural network with dropout applied.

Figure 5.2: �e technique of dropout stochastically removes the contribution of certain neurons to regularize
learning. Figures from Srivastava et al. (2014).

where we may think of this posterior as evaluating the sentence “the likelihood of the observed outputs
given a particular set of parameters (weighted by a prior) compared to how likely they are in general.”
�is la�er ‘in general’ quantity is the marginal likelihood (also known as the model evidence) over the
space of parameters,

p(Y|X) =

∫

π
p(Y|X,π)p(π)dπ. (5.10)

For a given test input x∗, we can then infer a predictive distribution over the space of outputs by
integrating over the posterior of model parameters:

p(y∗|x∗,D) =

∫

π
p(y∗|x∗,π)p(π|D)dπ. (5.11)

For most problems, evaluating the posterior (Equation (5.9)) analytically is not feasible. In such cases,
we can turn to the technique of variational inference (Gal, 2016).

Variational Inference

In variational inference, we de�ne a simpler variational density q(π;θ) based on the auxiliary param-
eters θ. We then seek to minimize the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951)
between q(π;θ) and the true posterior p(π|D):

θ∗ = argmin
θ

KL(q(π;θ)||p(π|D)) = argmin
θ

∫
q(π;θ) log

q(π;θ)

p(π|D)
dπ, (5.12)

which then allows us to compute the approximate predictive distribution as

p(y∗|x∗,D) ≈
∫

π
p(y∗|x∗,π)q(π;θ∗)dπ. (5.13)
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One can show that minimizing KL divergence (Equation (5.12)) is the same as maximizing the evidence
lower bound (ELBO)1

θ∗ = argmax
θ

−LELBO = argmax
θ

∫

π
log p(Y|X,π)q(π;θ)dπ − KL(q(π;θ) || p(π)). (5.14)

Intuitively, maximizing the �rst term above (referred to as the expected log likelihood) ensures that
q(π;θ) explains the dataset well, while minimizing the la�er term regularizes the optimization so that
q(π;θ) does not stray too far away from a prior.

5.5.2 Monte Carlo Dropout as Approximate Variational Inference

A key insight of Gal (2016); Gal and Ghahramani (2016b) was that the training objective of a neural
network with dropout resembles the ELBO optimization of Equation (5.14) with a careful choice of
q(π;θ). Namely, consider training a neural network with dropout and with another form of regular-
ization calledweight decay (which penalizes large weight magnitudes). �e loss function for supervised
training in this scenario can be wri�en as

Ldropout(π) =
1

N

N∑

i=1

E(yi, ỹi)

︸ ︷︷ ︸
error function

+λ

L∑

`=1

(
‖W`‖22 + ‖b`‖22

)

︸ ︷︷ ︸
weight decay

, (5.15)

where yi is the target output, λ is a scalar weight decay hyper-parameter, and ỹi = NN(xi) is a
stochastic sample of the network output with dropout applied. Now if we de�ne q(π) to be a Bernoulli
variational distribution over the network parameters as the re-parametrized density,

q(π;θ) = {diag({εi`})W`,b`}L`=1 (5.16)

εi` ∼ Bernoulli(p) (5.17)

where the auxiliary variables become the network parameters themselves, θ = {W`,b`}L`=1, then we
can show an equivalence between optimizing the variational inference ELBO loss function,

LELBO(θ) = −
∫

π
log p(Y|X,π)q(π;θ)dπ + KL(q(π;θ) || p(π)) (5.18)

= −
N∑

i=1

∫

π
log p(yi|xi,π)q(π;θ)dπ + KL(q(π;θ) || p(π)) (5.19)

1KL divergence and the ELBO di�er by a constant that is not dependent on the auxiliary variables.
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and optimizing Equation (5.15) above as follows. First, the �rst term above can be approximated
through Monte Carlo integration with a single sample2 π̃ of q(π;θ) such that,

= −
N∑

i=1

log p(yi|xi, π̃) + KL(q(π;θ) || p(π)). (5.20)

Second, it is possible to show that there exists a Gaussian prior p(π) such that the condition (Eq. 3.12,
Gal (2016))

∂KL(q(π;θ) || p(π))

∂θ
≈
∂λ
∑L

`=1

(
‖W`‖22 + ‖b`‖22

)

∂θ
(5.21)

holds. Finally, if we interpret − log p(yi|xi, π̃) as E(yi, ỹi) then it follows that

∂LELBO
∂θ

∝ ∂LDropout
∂θ

(5.22)

where the proportional constant can be wri�en down analytically (Gal, 2016). �us the two objectives
result in the same optimal parameters.

Computing Moments

�e results above indicate that, once trained, a neural network with dropout gives us access to a
predictive distribution over outputs y. An unbiased estimator for its mean and covariance are given
by applying dropout at test time and computing statistics over T samples:

E [y∗] =
1

T

T∑

t=1

ỹ∗t , (5.23)

where ỹ∗t = NN(x∗; π̃t) and

Var(y∗) = τ−11 +
1

T

T∑

t=1

ỹ∗t (ỹ
∗
t )

T − E [y∗]E [y∗]T , (5.24)

where the precision τ de�nes the likelihood

p(y|x,π) = N (NN(x;π), τ−11) (5.25)

and can be alternatively modelled as

τ =
l2(1− p)

2Nλ
, (5.26)

where l de�nes a characteristic length scale (Gal, 2016). �is test-time stochastic sampling through
dropout is referred to as Monte Carlo dropout.

2In practice, stochastic gradient descent will select a mini-batch of these samples to give an unbiased estimate.
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Well Lit RegionsSky Shadows

Figure 5.3: �ree conv1 layer activation maps superimposed on two images from the KITTI odometry bench-
mark (Geiger et al., 2013) 00 and 04 for three selected �lters. Each �lter picks out salient parts of the image
that aid in sun direction inference.
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Figure 5.4: �e GoogLeNet architecture used in this work. �is deep convolutional network relies on inception

modules that concatenate the output of several convolutions with a max-pooling operation. Figure from Szegedy
et al. (2015).

5.5.3 Extension to Convolutional Neural Networks

Although the derivation is more tedious, Gal (2016); Gal and Ghahramani (2016a) show that the same
approximate variational inference can be carried out for convolutional neural networks by applying
dropout a�er every convolution (and before pooling) during training and using MC dropout during
testing.

5.6 Indirect Sun Detection using a Bayesian Convolutional Neural
Network

Leveraging the work of Gal and Ghahramani (2016a), we apply MC dropout to a Convolutional Neural
Network (CNN) (approximating a BCNN, or Bayesian CNNN) to infer the direction of the sun and an
associated uncertainty, and refer to our model as Sun-BCNN. We motivate the choice of a deep model
through the empirical �ndings of Clement et al. (2017) and Ma et al. (2016), who demonstrated that
a CNN-based sun detector can substantially outperform hand-cra�ed models such as that of Lalonde
et al. (2011) both in terms of measurement accuracy and in its application to a VO task.

We choose a deep neural network structure based on GoogLeNet (Szegedy et al., 2015) due to its
use in past work that adapted it for orientation regression (Kendall and Cipolla, 2016; Kendall et al.,
2015). Unlike Ma et al. (2016), we choose to transfer weights trained on the MIT Places dataset (Zhou
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et al., 2014) rather than ImageNet (Deng et al., 2009). We believe the MIT Places dataset is a more
appropriate starting point for localization tasks than ImageNet since it includes outdoor scenes and is
concerned with classifying physical locations rather than objects.

5.6.1 Cost Function

We train Sun-BCNN by minimizing the cosine distance between the unit-norm target sun direction
vector sk and the predicted unit-norm sun direction vector ŝk, where k indexes the images in the
training set:

L (ŝk) = 1− (ŝk · sk). (5.27)

Note that in our implementation, we do not formulate the cosine distance loss explicitly, but instead
minimize half the square of the tip-to-tip Euclidian distance between sk and ŝk, which is equivalent to
Equation (5.27) since both vectors have unit length:

1

2
‖ŝk − sk‖2 =

1

2

(
‖ŝk‖2 + ‖sk‖2 − 2(ŝk · sk)

)

= 1− (ŝk · sk)
= L (ŝk) .

We ensure that our network output, ŝk, has a unit norm by appending a normalization layer to the
network.

5.6.2 Uncertainty Estimation

Using our notation for sun direction, we obtain the �rst two moments of the predictive distribution
from our BCNN as (c.f. Equations (5.23) and (5.24)):

E [ŝ∗]k = ŝ
∗
k ≈

1

N

N∑

n=1

ŝ∗k(x
∗
k,w

n) (5.28)

Var(ŝ∗k) ≈ τ−11 +
1

N

N∑

n=1

ŝ∗k(x
∗
k,w

n) ŝ∗k(x
∗
k,w

n)T

− ŝ
∗
k ŝ
∗
k

T
, (5.29)

where 1 is the identity matrix, andwn is a weight sample obtained indirectly by performing a forward
pass with dropout. Following Gal and Ghahramani (2016a), we build our BCNN by adding dropout
layers a�er every convolutional and fully connected layer in the network. We then retain these layers
at test time to sample the network stochastically, following the technique of Monte Carlo Dropout,
and obtain the relevant statistical quantities using Equations (5.28) and (5.29).
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5.6.3 Implementation and Training

We implement our network in Ca�e (Jia et al., 2014), using the L2Norm layer from the Ca�e-SL fork3

to enforce a unit-norm constraint on the �nal output. We train the network using stochastic gradient
descent, se�ing all dropout probabilities to 0.5, performing 30,000 iterations with a batch size of 64,
and se�ing the initial learning rate to be between 10−3 and 10−4. Training requires approximately
2.5 hours on an NVIDIA Titan X GPU. Interestingly, Figure 5.4 shows that some convolutional �lters
learned by Sun-BCNN on the KITTI dataset appear to correspond to illumination variations reminis-
cent of the visual cues designed by Lalonde et al. (2011).

Data Preparation & Transfer Learning

We resize images from their original size to [224× 224] pixels to achieve the size expected by Google-
LeNet. We experimented with preserving the aspect ratio of the original image and padding zeros to
the top and bo�om of the resized image, but found that preserving the vertical resolution (as done by
Ma et al. (2016)) results in be�er test-time accuracy. We do not crop or rotate the images, nor do we
augment the dataset in any other way.

Model Precision

We �nd an empirically optimal model precision τ by optimizing the Average Normalized Estimation
Error Squared (ANEES) across the entire test set for each dataset. While this hyperparameter should
in principle be tuned using a validation set, we omit this step to keep our training procedure consis-
tent with that of Ma et al. (2016). We note that the BCNN uncertainty estimates are a�ected by two
signi�cant factors: 1) variational inference is known to underestimate predictive variance (Gal, 2016);
and 2) we assume the observation noise is homoscedastic. As noted by Gal (2016), the BCNN can be
made heteroscedastic by learning the model precision during training, but this extension is outside the
scope of this work.

Data Partitioning

We partition our data into training and testing sets using a leave-one-out approach based on temporally
disjoint sequences of images. �at is, given N sequences, the model tested on sequence i is trained
with sequences {1, 2, ..., N} \ i. �is process varies based on the dataset, and we discuss the speci�cs
in the experimental discussion corresponding to each. In contrast to randomly holding out a subset of
the data, this method minimizes the similarity of training and testing data for temporally correlated
image streams.
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Figure 5.5: Distributions of azimuth error, zenith error, and angular distance for Sun-BCNN compared to ground
truth over each test sequence in the KITTI dataset. Top row: Cumulative distributions of errors for each test
sequence individually. Bo�om row: Histograms and Gaussian �ts of aggregated errors.
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test sequences 04, 06 and 10. Sun-CNN is trained and tested on every tenth image, whereas Sun-BCNN is
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image to make a fair comparison.
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Table 5.1: Test Errors for Sun-BCNN on KITTI odometry sequences with estimates computed at every image.

Zenith Error [deg] Azimuth Error [deg] Vector Angle Error [deg]
Sequence Mean Median Stdev Mean Median Stdev Mean Median Stdev ANEES1

00 -2.59 -1.37 5.15 -0.33 0.81 25.61 13.56 10.31 13.14 1.00
01 -12.53 -8.31 10.33 8.95 8.83 33.67 22.16 17.85 15.00 1.38
02 -6.13 -4.26 7.38 -1.03 0.74 37.61 19.69 14.32 18.25 1.40
04 -2.42 -2.11 1.64 -3.89 -2.18 9.14 5.33 3.29 6.44 0.30
05 -4.31 -2.51 6.18 -0.74 -3.80 29.81 15.66 11.33 14.80 1.05
06 -2.48 -2.52 2.27 -12.22 -17.86 25.78 19.78 17.72 11.35 1.93
07 -0.69 -0.16 3.26 1.25 5.98 20.27 12.44 10.05 9.97 0.97
08 -4.46 -1.61 8.14 3.66 -0.14 41.73 19.90 13.30 19.59 1.04
09 -1.35 -0.75 5.60 4.78 2.36 23.84 13.09 9.48 12.66 0.73
10 0.59 0.95 3.90 3.64 2.61 19.15 11.23 8.34 9.83 1.08

All -4.01 -2.26 7.06 0.68 0.53 32.23 16.66 12.08 15.91 -
1 We compute Average Normalized Estimation Error Squared (ANEES) values with all sun directions that fall below a

cosine distance threshold of 0.3 (relative to ground truth) and set τ−1 = 0.015.
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Figure 5.7: Box-and-whiskers plot of �nal test errors on all ten KITTI odometry sequences (c.f. Table 5.1).
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Figure 5.8: VO results for KITTI odometry sequence 05 using simulated sun measurements at every tenth pose.
We observe a clear progression in cumulative root mean squared error (CRMSE) in translation and rotation as
noise in the simulated sun measurements increases.
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5.7 Urban Driving Experiments: �e KITTI Odometry Benchmark

We investigated the performance of Sun-BCNN on the KITTI odometry benchmark training set (Geiger
et al., 2013), which consists of 21.6 km of urban driving data4. Importantly, the dataset includes 6-
DOF ground truth poses obtained from an accurate GPS/INS tracking system, as well as calibrated
transformations between this sensor and the colour stereo pair we use for sun estimation and VO in
our experiments. �is allows us to create a training set of ground truth sun vectors for each image
by querying the solar ephemeris model at each ground truth pose and rotating the resulting vector
from the GPS/INS frame F−→0 (which is an ENU coordinate system) into the camera coordinate frame
F−→k. For each of our experiments, we trained Sun-BCNN on nine benchmark sequences and tested
on the remaining sequence. �is procedure is consistent with that of Ma et al. (2016), against whose
Sun-CNN we directly compare, and allows us to evaluate each sequence using the maximum amount
of training data.

Ground Truth

Sun-BCNN

Figure 5.9: Sun BCNN predictions and associated ground truth sun directions on the KITTI sequence 05. Top
two rows: Sun BCNN produces accurate predictions in a variety of azimuth values. Bo�om row: Poor results
occur rarely due to shadow ambiguities.

5.7.1 Sun-BCNN Test Results

Once trained, we analyzed the accuracy and consistency of the Sun-BCNN mean and covariance es-
timates. We obtained the mean estimated sun vector by evaluating Equation (5.28) with N = 25 and
then re-normalized the resulting vector to preserve unit length. To obtain the required covariance

3https://github.com/wanji/caffe-sl
4Because we rely on the �rst pose reported by the GPS/INS system, we used the raw (recti�ed and synchronized) se-

quences corresponding to each odometry sequence. However, the raw sequence 2011 09 26 drive 0067 correspond-
ing to odometry sequence 03 was not available on the KITTI website at the time of writing, so we omit sequence 03 from
our analysis.

https://github.com/wanji/caffe-sl
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Figure 5.10: VO results for KITTI odometry sequences 02, 05, and 08 using estimate sun directions at every
tenth pose. Top row: Estimated and ground truth trajectories in the Easting-Northing (EN) plane. Middle row:
Translational cumulative root mean squared error (CRMSE) in the EN-plane. Bo�om row: Rotational CRMSE.
Sun-BCNN signi�cantly reduces the estimation error on sequence 05, while the Lalonde (Lalonde et al., 2011),
Lalonde-VO (Clement et al., 2017), and Sun-CNN (Ma et al., 2016) methods provide modest reductions in esti-
mation error. �e remaining sequences are less clear, but Sun-BCNN generally provides some bene�t.
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Table 5.2: Comparison of translational and rotational average root mean squared error (ARMSE) on KITTI
odometry sequences with and without sun direction estimates at every tenth image. �e best result (excluding
simulated sun sensing) is highlighted in bold.

Sequence1 00 012 02 04 05 06 07 08 09 10

Length [km] 3.7 2.5 5.1 0.4 2.2 1.2 0.7 3.2 1.7 0.9

Trans. ARMSE [m]
Without Sun 4.33 198.52 28.59 2.48 9.90 3.35 4.55 28.05 10.44 5.54
GT-Sun-0 5.40 114.69 23.83 2.23 4.84 3.50 1.58 31.55 8.21 3.67
GT-Sun-10 4.85 123.84 25.34 2.45 5.84 2.80 2.94 28.47 8.65 4.81
GT-Sun-20 4.78 136.60 22.33 2.46 8.16 3.03 3.90 27.54 8.68 5.45
GT-Sun-30 4.83 157.14 27.30 2.48 8.93 3.44 4.62 26.73 10.10 5.28
Lalonde 3.81 200.34 28.13 2.47 9.88 3.36 4.61 29.70 10.49 5.48
Lalonde-VO 4.87 199.03 29.41 2.48 9.74 3.30 4.52 27.82 11.06 5.59
Sun-CNN 4.36 192.50 26.58 2.48 8.92 3.38 4.30 26.99 10.15 5.58
Sun-BCNN 4.44 188.46 26.89 2.48 8.50 4.10 4.21 27.71 10.13 5.61

Trans. ARMSE (EN-plane) [m]
Without Sun 4.53 230.73 30.66 1.81 11.50 3.68 5.44 32.37 11.65 5.95
GT-Sun-0 3.41 136.76 24.12 1.46 3.67 3.96 1.80 21.51 7.77 3.71
GT-Sun-10 5.05 149.36 24.79 1.79 6.29 2.73 3.51 22.41 8.90 5.09
GT-Sun-20 5.14 164.37 22.04 1.80 9.01 3.13 4.66 27.58 8.86 5.81
GT-Sun-30 5.12 188.61 22.65 1.83 10.31 3.83 5.50 27.65 11.16 5.58
Lalonde 3.95 232.66 27.30 1.81 11.20 3.70 5.52 27.84 11.41 5.87
Lalonde-VO 5.38 231.33 33.68 1.82 11.13 3.61 5.42 32.24 12.41 6.00
Sun-CNN 4.56 224.91 24.65 1.82 9.99 3.74 5.16 30.09 11.21 5.99
Sun-BCNN 4.68 220.54 23.58 1.82 6.70 4.78 5.05 26.59 10.97 6.03

Rot. ARMSE (×10−3) [axis-angle]
Without Sun 23.88 185.30 63.18 12.97 70.18 23.24 49.96 63.13 26.77 21.54
GT-Sun-0 11.20 38.82 53.48 11.75 29.38 17.66 20.37 56.39 17.00 12.60
GT-Sun-10 17.05 64.51 58.78 12.86 41.47 18.90 34.05 54.89 19.71 14.26
GT-Sun-20 18.84 94.65 58.03 12.91 55.39 19.67 43.34 58.82 20.99 25.87
GT-Sun-30 23.40 121.21 57.79 13.01 62.73 23.96 49.92 56.74 25.63 20.15
Lalonde 21.10 188.06 66.02 12.96 69.00 23.27 50.49 64.22 26.27 20.49
Lalonde-VO 27.91 185.52 69.52 12.98 68.09 22.79 49.74 65.35 28.82 22.10
Sun-CNN 24.05 177.45 58.32 13.00 61.48 23.34 47.77 60.55 26.19 21.99
Sun-BCNN 26.96 175.21 75.02 13.00 47.96 23.80 47.57 62.85 26.29 20.85

1 Because we rely on the timestamps and �rst pose reported by the GPS/INS system, we use the
raw (recti�ed and synchronized) sequences corresponding to each odometry sequence. However,
the raw sequence2011 09 26 drive 0067 corresponding to odometry sequence03was not
available on the KITTI website at the time of writing, so we omit sequence 03 from our analysis.

2 Sequence 01 consists largely of self-similar, corridor-like highway driving which causes di�-
culties when detecting and matching features using viso2. �e base VO result is of low quality,
although we note that including global orientation from the sun nevertheless improves the VO
result.
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on azimuth and zenith angles, we sampled the vector outputs, converted them to azimuth and zenith
angles using Equation (5.7), and then applied Equation (5.29).

Remark (Number of stochastic passes). We base our choice of N = 25 on the results presented in Gal
(2016), Figure 4.12. Namely, Gal shows thatN ≈ 20 provides a good balance of e�ciency and accuracy
(in terms of test-time error) for MC dropout with convolutional networks.

We investigate the impact of this parametrization (as opposed to working in azimuth and zenith
coordinates directly) later in this chapter. As shown in Table 5.1, we chose a value for the model
precision τ such that the Average Normalized Estimation Error Squared (ANEES) of each test sequence
is close to one (i.e., the estimator is consistent).

Figures 5.5 and 5.7 plot the error distributions for azimuth, zenith, and angular distance for all ten
KITTI odometry sequences, while Figure 5.6 shows three characteristic plots of the azimuth and zenith
predictions over time. We see that the errors in azimuth and zenith are strongly peaked around zero
and are reasonably well described by a Gaussian distribution, which are important properties assumed
by our VO pipeline to produce maximum likelihood motion estimates based on the fusion of multiple
data sources. Note that the error distribution in zenith is slightly biased towards negative values due
to the presence of a long tail on the negative side of the mean. �is is an artifact of the azimuth-zenith
parameterization when the sun zenith is small (i.e., when the sun is high in the sky), since zenith
angles are de�ned on [0, π]. In practice, we a�empt to reduce the in�uence of the long negative tail
by imposing a robust Huber loss on the sun measurement errors in our optimization problem.

Table 5.1 summarizes the Sun-BCNN test errors numerically. Sun-BCNN achieved median vector
angle errors of less than 15 degrees on every sequence except sequence 01 and 06, which were partic-
ularly di�cult in places due to challenging lighting conditions. It is interesting to note that sequences
00 and06 also have higher than average ANEES values, which indicates that the estimator is overcon-
�dent in its estimates despite their low quality. We suspect this behaviour stems from the assumption
of homoscedastic noise in the BCNN, which treats all input images as being equally amenable to sun
estimation across the entire sequence.

5.7.2 Visual Odometry Experiments

We evaluated the in�uence of the estimated sun directions and covariances obtained from Sun-BCNN
on the KITTI odometry benchmark using the sun-aided VO pipeline previously described. To place
these results in context, we compare them against the results obtained using simulated sun measure-
ments with varying levels of noise, the method of Lalonde et al. (2011) and its VO-informed variant
(Clement et al., 2017), and the Sun-CNN of Ma et al. (2016).

Simulated Sun Sensing

In order to gauge the e�ectiveness of incorporating sun information in each sequence, and to deter-
mine the impact of measurement error, we constructed several sets of simulated sun measurements by
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computing ground truth sun vectors and arti�cially corrupting them with varying levels of zero-mean
Gaussian noise. We obtained these ground truth sun vectors by transforming the ephemeris vector
into each camera frame using ground truth vehicle poses. Using the same convention as our experi-
ments with simulated trajectories, we created four such measurement sets with 0◦, 10◦, 20◦, and 30◦

mean angular distance from ground truth.
Figure 5.8 shows the results we obtained using simulated sun measurements on sequence 05,

in which the basic VO su�ers from substantial orientation dri�.5 Incorporating absolute orientation
information from the simulated sun sensor allows the VO to correct these errors, but the magnitude
of the correction decreases as sensor noise increases, consistent with the results of our simulation
experiments. As shown in Table 5.2, which summarizes our VO results for all ten sequences, this is
typical of sequences where orientation dri� is the dominant source of error.

While the VO solutions for sequences such as 00 do not improve in terms of translational ARMSE,
Table 5.2 shows that rotational ARMSE nevertheless improves on all ten sequences when low-noise
simulated sun measurements are included. �is implies that the estimation errors of the basic VO
solutions for certain sequences are dominated by non-rotational e�ects, and that the apparent bene�t
of the Lalonde method on translational ARMSE in sequence 00 is likely coincidental.

Vision-Based Sun Sensing

Figure 5.9 illustrates the behaviour of Sun-BCNN on four characteristic images from test sequence 05
by overlaying the Sun-BCNN predictions and associated ground truth sun directions for each image.
�e two frames in the top row both contain strong shadows which typically result in very accurate sun
predictions. Conversely, the bo�om row highlights two examples of rare situations where ambiguous
shadows lead to very inaccurate predictions. As previously mentioned, we mitigate the in�uence of
these outlier measurements by imposing a robust Huber loss on the sun measurement errors in our
optimizer.

Figure 5.10 shows the results we obtained for sequences 02, 05, and 08 using the Sun-CNN of
Ma et al. (2016), which estimates only the azimuth angle of the sun, our Bayesian Sun-BCNN which
provides full 3D estimates of the sun direction as well as a measure of the uncertainty associated with
each estimate, and the method of Lalonde et al. (2011) in its original and VO-informed (Clement et al.,
2017) forms, which provide 3D estimates of the sun direction without reasoning about uncertainty. A
selection of results using simulated sun measurements are also displayed for reference. All four sun
detection methods succeed in reducing the growth of total estimation error on this sequence, with
Sun-BCNN reducing both translational and rotational error growth signi�cantly more than the other
three methods. Both Sun-CNN and Sun-BCNN outperform the two Lalonde variants, consistent with
the results of Ma et al. (2016) and Clement et al. (2017).

Table 5.2 shows results for all ten sequences using each method. With few exceptions, the VO
results using Sun-BCNN achieve improvements in rotational and translational ARMSE comparable

5In order to make a fair comparison to the Sun-CNN of Ma et al. (2016), who compute sun directions for every tenth
image of the KITTI odometry benchmark, we subsample the sun directions obtained through each other method to match.



72 Chapter 5. Learning Sun Direction with Uncertainty

-40 -20 0 20 40
0

0.2

0.4

0.6

0.8

1

C
D
F

Zen. err. [deg]

00
01
02
03
04
05
06
07
08
09
10

-100 0 100
0

0.2

0.4

0.6

0.8

1
Az. err. [deg]

0 50
0

0.2

0.4

0.6

0.8

1
Vec. angle err. [deg]

-100 0 100

µ = -0.67

σ = 10.73

0

0.05

0.1

-40 -20 0 20 40

µ = -1.46

σ = 5.73

0

0.05

0.1

P
D
F

0 50

µ = 8.47

0

0.05

0.1

Figure 5.11: (Devon Island) Distributions of azimuth error, zenith error, and angular distance for Sun-BCNN
compared to ground truth over each test sequence. Top row: Cumulative distributions of errors for each test
sequence individually. Bo�om row: Histograms and Gaussian �ts of aggregated errors.

to those achieved using the simulated sun measurements with between 10 and 30 degrees average
error. As previously noted, sequences such as 00 do not bene�t signi�cantly from sun sensing since
rotational dri� is not the dominant source of estimation error in these cases. Nevertheless, these results
indicate that CNN-based sun sensing is a valuable tool for improving localization accuracy in VO and
an improvement that comes without the need for additional sensors or a specially oriented camera.

5.8 Planetary Analogue Experiments: �e Devon Island Rover Navi-
gation Dataset

In addition to urban driving, we further investigate the usefulness of Sun-BCNN in the context of
planetary exploration using the Devon Island Rover Navigation Dataset (Furgale et al., 2012), which
consists of various sensor data collected using a mobile sensor platform traversing a 10 km loop on
Devon Island in the Canadian High Arctic (Figure 5.13).

�e rugged landscape of Devon Island (Figure 5.13) is a signi�cant departure from the structured
urban environment of Karlsruhe. Unlike the KITTI odometry benchmark, the Devon Island dataset
provides ground truth vehicle orientations for only a small number of images, which means that our
previous method of generating ground truth sun vectors using ground truth poses is not applicable.
However, the sensor platform used to collect the dataset was equipped with a hardware sun sensor and
inclinometer, both of which were used by Lambert et al. (2012) to correct VO dri�. For our purposes,
we ignore the inclinometer and use the sun sensor measurements as training targets for Sun-BCNN.

�e Devon Island environment contains many features one might expect to be amenable to visual
sun detection. As shown in Figure 5.13, the dataset contains strong environmental shadows, stretches
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Figure 5.13: GPS track and sample images from the Devon Island traverse, with the start of each sequence
highlighted. �e Devon Island dataset is conducive to visual sun sensing due to the presence of strong environ-
mental shadows, re�ective surfaces such as mud and water, occasionally visible sun, and self-shadowing by the
sensor platform. (Map data: Google, DigitalGlobe)

Table 5.3: Test Errors for Sun-BCNN on Devon Island odometry sequences with estimates computed at every
image.

Zenith Error [deg] Azimuth Error [deg] Vector Angle Error [deg]
Sequence Mean Median Stdev Mean Median Stdev Mean Median Stdev ANEES2

00 -4.77 -3.77 6.82 -0.65 0.69 12.41 10.48 8.86 6.96 1.27
01 0.47 0.21 3.91 2.96 2.31 7.01 5.97 5.06 4.01 0.59
02 4.66 4.68 3.52 -0.72 -1.32 11.78 10.02 9.51 4.76 1.37
03 3.09 2.70 3.41 -7.47 -4.03 12.88 9.39 5.83 8.75 1.11
04 4.93 5.53 2.90 3.27 2.72 10.09 9.78 8.41 5.60 0.89
05 -1.01 0.46 4.97 5.26 2.46 8.23 7.19 4.15 6.60 0.92
06 -2.45 -2.58 2.23 -0.23 -0.30 5.07 4.72 4.17 3.16 0.31
07 -1.80 -1.87 3.28 0.47 0.20 6.45 5.23 4.25 3.38 0.41
08 -7.46 -7.88 2.85 -4.93 -5.14 10.30 11.61 10.63 3.96 1.33
09 -4.72 -4.46 5.27 -3.91 -2.13 14.61 9.90 8.02 8.56 0.86
10 -7.69 -7.82 2.92 -4.81 -1.54 10.80 11.79 9.19 7.52 0.91

All -1.46 -1.23 5.73 -0.67 -0.14 10.73 8.47 7.15 6.31 -
1 We compute Average Normalized Estimation Error Squared (ANEES) values with all sun directions that fall below

a cosine distance threshold of 0.3 (relative to ground truth) and set τ−1 = 0.01.

of wet terrain featuring re�ective mud and water, and some self-shadowing from the sensor platform
itself. At times the sun is partially visible to the camera, although these images tend to be saturated
and do not immediately allow for accurate localization of the sun in the image.

For the purposes of our experiments, we partition the dataset into 11 sequences of approximately
1 km each, chosen such that the full pose of the vehicle at the beginning of each sequence is available
from the ground truth data (see Figure 5.13). In aggregate, the sequences contain 13257 poses with as-
sociated sun sensor measurements. We apply a similar training and testing procedure as for the KITTI
dataset, with the exception that we now withhold one sequence for validation and hyper-parameter
tuning in addition to the sequence withheld for testing. �is leaves nine sequences remaining to form
the training sets for each test and validation pair.
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Figure 5.14: Box-and-whiskers plot of �nal test errors on Devon Island odometry sequences (c.f. Table 5.3).

5.8.1 Sun-BCNN Test Results

As in our experiments with the KITTI odometry benchmark, we obtained the mean estimated sun
vector by evaluating Equation (5.28) with N = 25 and re-normalizing the resulting vector to preserve
unit length. To obtain the required covariance on azimuth and zenith angles, we again sampled the
vector outputs, converted them to azimuth and zenith angles using Equation (5.7), and then applied
Equation (5.29). As shown in Table 5.3, we chose a value for the model precision τ such that the
Average Normalized Estimation Error Squared (ANEES) of each test sequence is close to one (i.e., the
estimator is consistent).

Figures 5.11 and 5.14 plot the error distributions for azimuth, zenith, and angular distance for
all 11 Devon Island odometry sequences, while Figure 5.12 shows three characteristic plots of the
azimuth and zenith predictions over time. We see that the errors in azimuth and zenith are strongly
peaked around zero and are be�er described by a Gaussian distribution than in the case of KITTI (c.f.
Figure 5.5), which as we previously mentioned are important properties assumed by our VO pipeline to
appropriately fuse data. �e distribution of zenith errors in the Devon Island dataset does not exhibit
the same bias and long tail we observed in the KITTI dataset. �is is likely because the sun is much
lower in the sky (i.e., the zenith angle is further from zero) in the Devon Island dataset than in the
KITTI dataset, so there is no clipping of the distribution near zero zenith.

Table 5.3 summarizes the test errors and ANEES of each sequence numerically, while Figures 5.11
and 5.14 plot the error distributions for azimuth, zenith, and angular distance for each sequence. Fig-
ure 5.12 shows three characteristic plots of the azimuth and zenith predictions over time. Sun-BCNN
achieved median vector angle errors of less than 10 degrees on every sequence except sequence 08.
Consistent with the results we observed in the KITTI experiments, the sequences with the highest me-
dian vector angle error (sequences 02 and 08) also have the highest ANEES values, again indicating
that the homoscedastic noise assumption is perhaps ill suited to this environment.

5.8.2 Visual Odometry Experiments

As in our KITTI benchmark experiments, we compare visual odometry results on each of our 11 test
sequences both with sun-based orientation corrections and without. Notably, we do not report re-
sults using simulated sun measurements since we are unable to generate these measurements without
ground truth vehicle orientations for every image. We also do not report results using the Sun-CNN
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(c) 05: VO trajectories (EN-plane)
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Figure 5.15: VO results for Devon Island sequences00, 01, and05 using estimated sun directions. Top row: Es-
timated and ground truth trajectories in the EN-plane. Bo�om rows: Translational cumulative root mean squared
error (CRMSE). Sun-BCNN signi�cantly reduces the estimation error on sequences where the sun sensing has
an impact (c.f. �).

of Ma et al. (2016) since we do not have access to their model. However, we do compare the results
obtained using Sun-BCNN to those obtained using the hardware sun sensor as well as the Lalonde
(Lalonde et al., 2011) and Lalonde-VO (Clement et al., 2017) methods.

Figure 5.15 shows sample VO results on three sequences from the Devon Island dataset using no
sun measurements, the hardware sun sensor, Sun-BCNN, and the Lalonde variants. While the Lalonde
methods struggle in this environment, Sun-BCNN yields signi�cant improvements in VO accuracy,
nearly on par with those obtained using the hardware sun sensor.

Table 5.4 summarizes these results numerically for all 11 sequences in the dataset. While the
addition of sun sensing using either the hardware sensor or Sun-BCNN generally results in signi�cant
reductions in error, we note that in certain cases (e.g., sequence 05), sun sensing has li�le or no impact
on the VO result. We suspect that the translation errors in these cases are dominated by non-rotational
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Table 5.4: Comparison of average root mean squared error (ARMSE) on Devon Island sequences with and
without sun direction estimates using both a hardware sun sensor and vision-based methods. �e best result
using a vision-based method is bolded.

Sequence 00 01 02 03 04 05 06 07 08 09 10

Length [km] 0.9 1.1 1.0 1.0 0.9 1.0 1.1 1.0 0.9 0.7 0.6

Trans. ARMSE [m]
Without Sun 40.93 56.51 41.58 42.04 30.52 27.82 58.91 40.04 47.22 11.39 12.94
Hardware Sun Sensor 23.26 20.79 9.79 22.03 30.79 22.47 24.14 29.59 47.97 6.26 8.50
Lalonde 35.77 51.74 53.32 47.00 39.55 50.70 94.77 59.37 45.78 10.03 16.23
Lalonde-VO 44.83 66.91 44.17 59.84 42.87 40.62 52.16 36.04 50.52 11.34 16.74
Sun-BCNN 31.17 27.45 16.00 26.02 29.34 25.70 33.43 32.25 50.80 4.27 14.92

Trans. ARMSE (EN-plane) [m]
Without Sun 48.20 66.49 43.58 45.92 31.08 24.23 43.01 22.33 40.85 9.30 15.59
Hardware Sun Sensor 19.13 16.74 8.99 21.18 28.27 25.08 29.27 21.76 28.89 5.14 9.70
Lalonde 43.45 62.03 36.21 49.44 20.13 26.13 53.22 18.10 35.62 6.01 18.45
Lalonde-VO 52.05 78.26 40.20 59.09 50.12 43.28 53.62 42.71 49.99 11.74 20.17
Sun-BCNN 30.28 32.65 9.62 14.32 33.26 30.62 36.44 23.18 13.53 4.45 14.75

e�ects, similarly to those observed in our experiments with the KITTI dataset, although it is di�cult
to be certain in the absence of rotational ground truth. As previously mentioned, the incorporation of
a motion prior in the VO estimator would likely reduce the impact of these errors.

5.9 Sensitivity Analysis

In this section we analyze the sensitivity of our model to cloud cover, investigate the possibility of
model transfer between urban and planetary analogue environments, and examine the impact of dif-
ferent methods for computing the mean and covariance of a norm-constrained vector on the accuracy
and consistency of the estimated sun directions.

5.9.1 Cloud Cover

Given that both the KITTI and Devon Island datasets were collected in sunny conditions, it is natural
to wonder whether and to what extent Sun-BCNN is a�ected by cloud cover. As shown in Figure 5.4,
Sun-BCNN relies in part on shadows and other local illumination variations to estimate the direction
of the sun. Since the di�use nature of daylight in cloudy conditions tends to so�en shadows and other
shading variations, one might expect Sun-BCNN to perform worse in cloudy conditions. Accordingly,
we investigated the e�ect of cloud cover on Sun-BCNN using selected sequences from the Oxford
Robotcar Dataset (Maddern et al., 2016), which consists of 1000 km of urban driving along a consistent
route but in varying weather conditions and at varying times over the course of a year.
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Figure 5.16: Sample images of approximately the same location taken from three di�erent Oxford Robotcar
sequences we used to investigate the e�ect of cloud cover on Sun-BCNN.

Procedure

We selected three sequences collected within a two hour period on the same day (namely 2014-07-
14-14-49-50, 2014-07-14-15-16-36, and 2014-07-14-15-42-55), which consist of
the same route observed under di�erent lighting conditions. Figure 5.16 presents sample images from
each of these sequences, which we label Overcast, Sun-Cloud A, and Sun-Cloud B, respectively. To
evaluate the performance of Sun-BCNN in each of these conditions, we partition each sequence into a
randomly selected set of training (80%), validation (10%) and test (10%) images, and then train and test
Sun-BCNN on each of the nine train-test permutations.

Results

Figure 5.17 shows the results of these experiments with box and whisker plots for azimuth, zenith
and vector angle errors while Table 5.5 summarizes the results numerically. We obtained the most
accurate test predictions using the model trained on Sun-Cloud B, the sequence with the least amount of
cloud cover. Notably, this model produced vector angle errors on the Overcast test set that were lower
than those trained with its own Overcast training set. Moreover, we note that the Sun-Cloud A model
achieved similar test errors when applied to the Sun-Cloud B test set as when applied to the Overcast

test set. Similarly, the Sun-Cloud B model achieved similar test errors when applied to the Sun-Cloud

A test set as when applied to the Overcast test set. From this we can conclude the following: 1) that
Sun-BCNN can still perform well in the presence of cloud cover; and 2) that training in environments
illuminated by strong directional light (i.e., sunny conditions) can signi�cantly improve sun estimation
accuracy in di�erent test conditions.
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Figure 5.17: Box-and-whiskers plot for zenith, azimuth and vector angle errors for nine di�erent combinations
of train-test sequences taken from the Oxford Robotcar dataset. Each column corresponds to a di�erent training
sequence, and each plot contains three di�erent test sequences. In the bo�om legend, we use the labels O:
Overcast, SCA: Sun-Cloud A, SCB: Sun-Cloud B.

5.9.2 Model Generalization

It may also be natural to ask how well a Sun-BCNN model trained in an urban environment performs
in a planetary analogue environment and vice versa. �is would provide some indication of whether
the model generalizes to new environments or if a philosophy of place-speci�c excellence (e.g., the
place-speci�c visual features of McManus et al. (2014)) is more appropriate for the task of illumination
estimation.

Procedure

We a�empted to answer this question by creating three larger datasets from combinations of the se-
quences used in our previous experiments:

1. KITTI odometry sequences 00 - 10;

2. Devon Island sequences 00 - 10; and

3. the previously discussed Overcast, Sun-Cloud A, and Sun-Cloud B sequences from the Oxford
Robotcar dataset.

We randomly partitioned each dataset into training (90%) and test (10%) sets. We then trained three
separate Sun-BCNN models on each training set, and evaluated each trained model on each of the
three test sets.
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Figure 5.18: Box-and-whiskers plot for zenith, azimuth and vector angle errors for nine di�erent combinations
of train-test datasets. Each column corresponds to a di�erent training sequence, and each plot contains three
di�erent test sequences. In the bo�om legend, we use the labels K: KITTI, D: Devon Island, O: Oxford. All three
models produce large biased errors when applied to other datasets, likely due to variations in optical properties
and parameter se�ings across cameras.

Results

Figure 5.18 shows the results of these experiments with box and whisker plots for azimuth, zenith and
vector angle errors while Table 5.5 summarizes the results numerically. We see that none of the three
models generalize well to environments other than the one in which they were trained, yielding large
and signi�cantly biased test errors. We note, however, that the Oxford model was the least egregious
o�ender, and speculate that this may be because the Oxford sequences contain signi�cantly more
training images than the other two datasets (approximately 3 times as many as the KITTI odometry
benchmark and 5 times as many as the Devon Island dataset).

A possible explanation for the poor generalization of these models is the fact that each dataset was
collected using di�erent cameras with di�erent optical properties and parameter se�ings. We believe
these di�erences a�ect Sun-BCNN’s ability to recover an accurate estimate of a three dimensional
direction vector, since metrically important quantities such as the principal point and focal length of
the sensor can vary signi�cantly from camera to camera. Furthermore, di�erences in dynamic range
may also signi�cantly a�ect the ability of Sun-BCNN to treat shading variations consistently.

5.9.3 Mean and Covariance Computation

In our formulation, Sun-BCNN outputs a sampling of unit-norm 3D vectors. Due to the unit-norm
constraint, it is not immediately clear how to apply Equations (5.28) and (5.29) to calculate the mean
and covariance of these samples. In this section we present and empirically evaluate two possible
procedures for each computation using the previously discussed combined datasets for KITTI, Devon
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Table 5.5: Test Errors for Sun-BCNN on three di�erent Oxford Robotcar sequences collected on the same day
with di�erent lighting conditions.

Zenith Error [deg] Azimuth Error [deg] Vector Error [deg]
Train Test Mean Median Std. Mean Median Std. Mean Median Std.

Overcast1
Overcast -7.12 -5.20 7.04 -0.66 0.72 29.36 15.22 12.06 11.73
Sun-Cloud A -11.58 -9.34 7.94 -5.71 -4.37 37.21 21.19 18.03 14.07
Sun-Cloud B -15.23 -12.96 8.00 0.05 -1.49 38.83 23.36 18.49 15.05

Sun-Cloud A2
Overcast -7.17 -5.39 9.05 -0.67 1.68 51.27 23.66 18.03 18.11
Sun-Cloud A -6.49 -4.64 7.88 0.29 0.35 27.42 14.31 10.02 12.75
Sun-Cloud B -12.89 -10.58 8.94 1.87 3.51 40.41 23.45 19.06 16.75

Sun-Cloud B3
Overcast 3.34 5.22 6.46 -0.32 2.24 26.07 13.95 10.63 11.32
Sun-Cloud A -0.14 2.30 7.36 -1.08 1.34 28.54 13.76 8.06 14.60
Sun-Cloud B -0.84 -0.54 2.07 -0.36 -0.22 9.00 5.11 3.73 5.13

1 2014-07-14-14-49-50 2 2014-07-14-15-16-36 3 2014-07-14-15-42-55

Table 5.6: Test Errors for Sun-BCNN on di�erent training and test datasets.

Zenith Error [deg] Azimuth Error [deg] Vector Error [deg]
Train Test Mean Median Std. Mean Median Std. Mean Median Std.

KITTI
KITTI -1.49 -1.08 2.99 -0.64 -0.60 11.46 7.16 5.61 6.23
Devon Island -9.27 -10.86 9.97 26.78 66.15 113.23 81.32 86.82 33.48
Oxford -0.02 0.80 6.59 -0.44 1.81 91.30 52.39 54.05 29.46

Devon Island
KITTI -2.37 2.27 14.30 -5.58 -0.38 78.01 48.16 45.06 27.85
Devon Island -0.08 -0.05 3.20 0.20 0.12 5.52 4.24 3.52 2.96
Oxford -1.35 0.00 11.57 17.12 18.85 96.86 55.52 54.55 29.88

Oxford
KITTI -17.05 -12.25 13.19 -6.94 3.55 77.70 44.66 41.91 23.00
Devon Island -20.07 -19.47 9.81 20.92 24.56 45.52 35.16 32.15 16.07
Oxford -1.96 -1.59 4.60 0.19 0.48 15.08 8.08 6.16 7.68
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Table 5.7: A comparison of prediction errors from di�erent mean estimation methods.

Zenith Error [deg] Azimuth Error [deg] Vector Error [deg]
Sequence Mean Type Mean Median Std. Mean Median Std. Mean Median Std.

KITTI Method I -1.50 -1.06 2.96 -0.56 -0.47 11.52 7.16 5.52 6.27
Method II -1.06 -0.76 2.44 -0.30 -0.37 30.18 11.49 5.95 18.60

Devon Method I -0.07 0.02 3.18 0.19 0.27 5.76 4.22 3.55 3.04
Method II 0.04 0.09 3.17 1.11 0.26 24.62 9.19 4.05 20.22

Oxford Method I -1.97 -1.66 4.59 0.20 0.51 15.31 8.12 6.10 7.74
Method II -1.45 -1.27 3.95 -1.58 0.11 34.46 13.18 6.76 19.24

Island, and Oxford.

Mean computation

Procedure We investigated two di�erent methods for computing the mean of the sampled sun vec-
tors, which we refer to as Method I and Method II.

1. In Method I (used in this work), we �rst evaluate Equation (5.28) directly on the constrained
unit vectors produced by N stochastic passes through the BCNN. We then re-normalize the
resulting mean vector to enforce unit length, and convert it to azimuth and zenith angles using
Equation (5.7).

2. In Method II, we �rst convert each of the N unit vectors produced through stochastic passes
through the BCNN to azimuth and zenith angles using Equation (5.7). We then evaluate Equa-
tion (5.28) on the angles themselves to obtain the mean in azimuth-zenith coordinates.

We evaluated both methods using the same combined datasets and partitioning scheme as in the
transfer learning experiment previously presented.

Results Table 5.7 presents the azimuth, zenith and vector errors for the two mean computation
methods. Method I produces lower vector errors and smaller standard deviations in azimuth and zenith
on all three datasets.

Covariance Computation

Procedure We further investigated two di�erent covariance computation methods, which we also
refer to as Method I and Method II.

1. In Method I, we �rst evaluate Equation (5.29) directly on the constrained unit vectors produced
byN stochastic passes through the BCNN, yielding a 3×3 covariance. We then compute a 2×2

covariance on azimuth and zenith by propagating the 3 × 3 covariance through a linearized
Equation (5.7).
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Table 5.8: A comparison of ANEES values for di�erent mean and covariance propagation methods.

Sequence Covariance Type Mean Type ANEES

KITTI
Method I Method I 0.95

Method II 5.10

Method II Method I 1.40
Method II 0.87

Devon
Method I Method I 1.29

Method II 10.05

Method II Method I 0.50
Method II 0.85

Oxford
Method I Method I 1.50

Method II 2.14

Method II Method I 1.30
Method II 0.89

2. In Method II (used in this work), we �rst convert each of theN unit vectors produced by stochas-
tic passes through the BCNN to azimuth and zenith angles, and then evaluate Equation (5.29) on
the angles themselves.

We once again re-used the transfer learning datasets with the same partitioning scheme, and eval-
uated covariances on the test sets corresponding to each of the three models. To control for the e�ect
of tuning the model precision τ , we replace the diagonal elements of each covariance matrix with the
diagonal elements of the empirical covariance corresponding to the entire test set (computed based
ground truth azimuth and zenith errors). We then compared the consistency of the cross-correlations
of each method (i.e., the o�-diagonal components of the covariance matrix) by computing ANEES
values over the each model’s corresponding test set using both mean computation methods.

Results Table 5.8 lists the ANEES values produced by each method of covariance computation when
paired with each mean computation method. Method I covariances produced be�er ANEES values
when paired with Method I mean estimation, but Method II covariances paired well with either mean
estimation scheme.

Remark (Limitations and Extensions). Sun-BCNN has several limitations. Accurate sun predictions
require a test set that is similar to the training data, and generalizing across di�erent environments
and cameras presents a signi�cant challenge. Alternate loss functions and uncertainty quanti�cation
methods may improve performance. Potential extensions include,

1. the investigation of di�erent loss functions for learning illumination direction with uncertainty,

2. the investigation of di�erent network structures and methods that would improve generaliza-
tion across environments and camera sensors (e.g., learning in a way that is agnostic to camera
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intrinsics),

3. the addition of a temporal smoothing component to reduce prediction ‘ji�er’ between consecu-
tive images, and

4. the investigation of other uncertainty quanti�cation methods (e.g., bootstrapping).

5.10 Summary

In this chapter, we detailed an approach to improving the visual egomotion pipeline by learning to
extract a latent quantity within an existing image stream. Namely, we presented a deep-learning-
based model that could infer the direction of the sun from a single RGB image where the sun may not
be directly observable. We leveraged the technique of Monte Carlo dropout to produce a consistent
uncertainty estimate for each prediction.

�e prediction paired with the uncertainty estimate allowed us to treat our model, named Sun-
BCNN, as a ‘pseudo-sensor’ of sun direction whose output could be fused with existing motion esti-
mates much like those from a hardware-based sun sensor. In sum, our contributions with Sun-BCNN
were,

1. the application of a Bayesian CNN to the problem of sun direction estimation, incorporating the
resulting covariance estimates into a visual odometry pipeline;

2. an empirical demonstration that a Bayesian CNN with dropout layers a�er each convolutional
and fully-connected layer can achieve state-of-the-art accuracy at test time;

3. a loss function that incorporated a 3D unit-length sun direction vector, appropriate for full 6-
DOF pose estimation;

4. experimental results on over 30 km of visual navigation data in urban (Geiger et al., 2013) and
planetary analogue (Furgale et al., 2012) environments;

5. an investigation into the sensitivity of the Bayesian CNN-based sun estimate to cloud cover,
camera and environment changes, and measurement parameterization; and

6. an open-source implementation of Sun-BCNN in the Ca�e framework6.

6https://github.com/utiasSTARS/sun-bcnn-vo.

https://github.com/utiasSTARS/sun-bcnn-vo


Chapter 6

Learning Estimator Bias

Life can only be understood backwards; but
it must be lived forwards.

Søren Kierkegaard

If a learned model like Sun-BCNN can extract useful orientation information directly from images,
is it possible to create a more general approach that can learn full SE(3) corrections to an existing
egomotion estimate? In this chapter, we show that this is possible through what we call a deep pose

correction (DPC) network.

Remark (Associated Publications). DPC is associated with the journal publication:

1. Peretroukhin, V. and Kelly, J. (2018). DPC-Net: Deep pose correction for visual localization. IEEE
Robotics and Automation Le�ers, 3(3):2424–2431.

�is chapter is largely a reproduction of that publication.

6.1 Motivation

As we noted in the previous chapter, convolutional neural networks are at the core of many state-of-
the-art classi�cation and segmentation algorithms in computer vision (LeCun et al., 2015). �ese CNN-
based techniques achieve accuracies previously una�ainable by classical methods. In mobile robotics
and state estimation, however, it remains unclear to what extent these deep architectures can obviate
the need for classical geometric modelling. Visual localization algorithms like VO can su�er from
several systematic error sources that include estimator biases, poor calibration, and environmental
factors (e.g., a lack of scene texture). While machine learning approaches can be used to be�er model
speci�c subsystems of a localization pipeline (e.g., the heteroscedastic feature track error covariance
modelling of PROBE), much of the recent literature (Costante et al., 2016; Clark et al., 2017; Kendall

85
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et al., 2015; Melekhov et al., 2017; Oliveira et al., 2017) has been devoted to completely replacing the
estimator with a CNN-based system.
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Figure 6.1: We propose a Deep Pose Correction network (DPC-Net) that learns SE(3) corrections to classical
visual localizers.

We contend that this type of complete replacement places an unnecessary burden on the CNN.
Not only must it learn projective geometry, but it must also understand the environment and account
for sensor calibration and noise. Instead, we take inspiration from Sun-BCNN that demonstrates that
CNNs can infer di�cult-to-model geometric quantities to improve an existing localization estimate.
In a similar vein, we propose a system (Figure 6.1) that takes as its starting point an e�cient, classical
localization algorithm (like our canonical indirect VO pipeline) that computes high-rate pose estimates.
To it, we add a Deep Pose Correction Network (DPC-Net) that learns low-rate, ‘small’ corrections from
training data that we then fuse with the original estimates. DPC-Net does not require any modi�cation
to an existing localization pipeline, and can learn to correct multi-faceted errors from estimator bias,
sensor mis-calibration or environmental e�ects.

Although in this work we focus on visual data, the DPC-Net architecture can be readily modi�ed
to learn SE(3) corrections for estimators that operate with other sensor modalities (e.g., lidar). For this
general task, we derive a pose regression loss function and a closed-form analytic expression for its
Jacobian. Our loss naturally balances rotational and translational terms and permits a network to learn
corrections through unconstrained exponential coordinates, while deriving its Jacobian with respect
to SE(3) geodesic distance.
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6.2 Related Work

In the past decade, much of machine learning and its sub-disciplines has been revolutionized by care-
fully constructed deep neural networks (DNNs) (LeCun et al., 2015). For tasks like image segmentation,
classi�cation, and natural language processing, most prior state-of-the-art algorithms have been re-
placed by their DNN alternatives.

In mobile robotics, deep neural networks have ushered in a new paradigm of end-to-end training
of visuomotor policies (Levine et al., 2016) and signi�cantly impacted the related �eld of reinforce-
ment learning (Duan et al., 2016). In state estimation, however, most successful applications of deep
networks have aimed at replacing a speci�c sub-system of a localization and mapping pipeline (for
example, object detection (Yang et al., 2016), place recognition (Sunderhauf et al., 2015), or bespoke
discriminative observation functions (Haarnoja et al., 2016)).

Nevertheless, a number of recent approaches have presented convolutional neural network ar-
chitectures that purport to obviate the need for classical visual localization algorithms. For example,
Kendall et al. (Kendall et al., 2015; Kendall and Cipolla, 2017) presented extensive work on PoseNet, a
CNN-based camera re-localization approach that regresses the 6-DOF pose of a camera within a pre-
viously explored environment. Building upon PoseNet, Melekhov (Melekhov et al., 2017) applied a
similar CNN learning paradigm to relative camera motion. In related work, Costante et al. (Costante
et al., 2016) presented a CNN-based VO technique that uses pre-processed dense optical �ow images.
By focusing on RGB-D odometry, Handa et al. Handa et al. (2016), detailed an approach to learning
relative poses with 3D Spatial Transformer modules and a dense photometric loss. Finally, Oliviera
et al. (Oliveira et al., 2017) and Clark et al. (Clark et al., 2017) described techniques for more general
sensor fusion and mapping. �e former work outlined a DNN-based topometric localization pipeline
with separate VO and place recognition modules while the la�er presented VINet, a CNN paired with
a recurrent neural network for visual-inertial sensor fusion and online calibration.

With this recent surge of work in end-to-end learning for visual localization, one may be tempted to
think this is the only way forward. It is important to note, however (as noted in the introduction), that
these deep CNN-based approaches do not yet report state-of-the-art localization accuracy, focusing
instead on proof-of-concept validation.

Taking inspiration from Sun-BCNN (Chapter 5) that shows that CNNs can be used to inject global
orientation information into a visual localization pipeline, and leveraging ideas from recent approaches
to trajectory tracking in the �eld of controls (Li et al., 2017a; Punjani and Abbeel, 2015), we formulate
a system that learns pose corrections to an existing estimator, instead of learning the entire localization
problem ab initio.

6.3 System Overview: Deep Pose Correction

We base our network structure on that of (Handa et al., 2016) but learn SE(3) corrections from stereo
images and require no pre-training. Similar to (Handa et al., 2016), we use primarily convolutions with
kernels of size 3 × 3 and avoid the use of max pooling to preserve spatial information. We achieve
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Figure 6.2: �e Deep Pose Correction network with stereo RGB image data. �e network learns a map from
two stereo pairs to a vector of Lie algebra coordinates. Each darker blue block consists of a convolution, a
PReLU non-linearity, and a dropout layer. We opt to not use MaxPooling in the network, following Handa et al.
(2016). �e labels correspond to the stride, kernel size, and number of input and output channels of for each
convolution.
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downsampling by se�ing the stride to 2 where appropriate (see Figure 6.2 for a full description of the
network structure). We derive a novel loss function, unlike that used in Kendall and Cipolla (2017);
Melekhov et al. (2017); Oliveira et al. (2017), based on SE(3) geodesic distance. Our loss naturally
balances translation and rotation error without requiring a hand-tuned scalar hyper-parameter. Similar
to Costante et al. (2016), we test our �nal system on the KITTI odometry benchmark, and evaluate how
it copes with degraded visual data.

Given two coordinate frames F−→i, F−→i+∆p that represent a camera’s pose at time ti and ti+∆p

(where ∆p is an integer hyper-parameter that allows DPC-Net to learn corrections across multiple
temporally consecutive poses), we assume that our visual localizer gives us an estimate, T̂i,i+∆p , of
the true transform Ti,i+∆p ∈ SE(3) between the two frames. We aim to learn a target correction,

T∗i = Ti,i+∆pT̂
−1
i,i+∆p

, (6.1)

from two pairs of stereo images (collectively referred to as Iti,ti+∆p
) captured at ti and ti+∆p . Note

that the visual estimator does not necessarily compute T̂i,i+∆p directly. T̂i,i+∆p may be compounded
from several estimates. Given a dataset, {T∗i , Iti,ti+∆p

}Ni=1, we now turn to the problem of selecting
an appropriate loss function for learning SE(3) corrections.

6.3.1 Loss Function: Correcting SE(3) Estimates

In this work, we choose to parametrize our correction prediction as T = exp
(
ξ∧
)
, where ξ ∈ R6,

a vector of Lie algebra coordinates, is the output of our network (similar to Handa et al. (2016)). We
de�ne a loss for ξ as

L(T,T∗) = L(ξ,T∗) =
1

2
g(ξ)TΣ−1g(ξ), (6.2)

where
g(ξ) , log

(
exp

(
ξ∧
)
T∗−1

)∨
. (6.3)

Here, Σ is the covariance of our estimator (expressed using unconstrained Lie algebra coordinates),
and (·)∧, (·)∨ are de�ned as in Chapter 2. Given two stereo image pairs, we use the output of DPC-Net,
ξ, to correct our estimator as follows:

T̂
corr

= exp
(
ξ∧
)
T̂, (6.4)

where we have dropped subscripts for clarity.

Remark (Loss Functions over SE(3)). An alternative possible approach to learning T∗ is to break it into
constituent parts and then compose a loss function as the weighted sum of translational and rotational
error norms (as done in Kendall et al. (2015); Melekhov et al. (2017); Oliveira et al. (2017)). �at is,

L(T,T∗) = Lrot(C,C
∗) + βLtrans(r, r

∗). (6.5)
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�is however does not account for the possible correlation between the two losses, and requires the
careful tuning of a scalar weight β.

6.3.2 Loss Function: SE(3) Covariance

Importantly, since we are learning small estimator corrections, we can compute an empirical covariance
over the training set as

Σ =
1

N − 1

N∑

i=1

(
ξ∗i − ξ∗

)(
ξ∗i − ξ∗

)T
, (6.6)

where

ξ∗i , log (T∗i )
∨ = log

(
Ti,i+∆pT̂

−1
i,i+∆p

)∨
, ξ∗ ,

1

N

N∑

i=1

ξ∗i . (6.7)

�e term Σ balances the rotational and translation loss terms based on their magnitudes in the
training set, and accounts for potential correlations. We stress that if we were learning poses directly,
the pose targets and their associated mean would be trajectory dependent and would render this type
of covariance estimation meaningless. Further, we �nd that, in our experiments, Σ weights transla-
tional and rotational errors similarly to that presented in Kendall et al. (2015)1 based on the diagonal
components, but contains relatively large o�-diagonal terms.

6.3.3 Loss Function: SE(3) Jacobians

In order to use Equation (6.2) to train DPC-Net with back-propagation, we need to compute its Jacobian
with respect to our network output, ξ. Applying the chain rule, we begin with the expression

∂L(ξ)

∂ξ
= g(ξ)TΣ−1∂g(ξ)

∂ξ
. (6.8)

�e term ∂g(ξ)

∂ξ
is of importance. We can derive it in two ways. To start, note two important identities

Barfoot (2017). First, recalling the identity introduced in Chapter 2,

exp
(
(ξ + δξ)∧

)
≈ exp

(
(J δξ)∧

)
exp

(
ξ∧
)
, (6.9)

where J , J (ξ) is the le� SE(3) Jacobian. Second, if T1 , exp
(
ξ1
∧) and T2 , exp

(
ξ2
∧), then

log (T1T2)∨ = log
(
exp

(
ξ1
∧) exp

(
ξ2
∧))∨

≈
{

J (ξ2)−1ξ1 + ξ2 if ξ1 small
ξ1 + J (−ξ1)−1ξ2 if ξ2 small.

(6.10)

1Kendall et al. assign an optimal relative weight of 250 to 2000 to the rotational (quaternionic) error for outdoor scenes,
whereas we consistently see relative magnitudes of approximately 1000.
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To derive ∂g(ξ)

∂ξ
, we can linearize Equation (6.3) about ξ, by considering a small change δξ and apply-

ing Equation (6.9):

g(ξ + δξ) = log
(

exp
(
(ξ + δξ)∧

)
T∗−1

)∨
(6.11)

≈ log
(

exp
(
(J δξ)∧

)
exp

(
ξ∧
)
T∗−1

)∨
. (6.12)

Now, assuming that J δξ is ‘small’, and using Equation (6.3), Equation (6.10) gives:

g(ξ + δξ) ≈ J (g(ξ))−1J (ξ)δξ + g(ξ). (6.13)

Comparing this to the �rst order Taylor expansion: g(ξ + δξ) ≈ g(ξ) +
∂g(ξ)

∂ξ
δξ, we see that

∂g(ξ)

∂ξ
= J (g(ξ))−1J (ξ). (6.14)

�is expression makes no assumptions about the ‘magnitude‘ of our correction and works reliably
for any target. To summarize, to apply back-propagation to Equation (6.2), we use Equation (6.8) and
Equation (6.14).

Remark (Alternative Derivation of

∂g(ξ)

∂ξ
). If we assume that only ξ is ‘small’, we can apply Equa-

tion (6.10) directly to de�ne
∂g(ξ)

∂ξ
= J (−ξ∗)−1, (6.15)

with ξ∗ , log (T∗)∨. Although a�ractively compact, note that this expression for ∂g(ξ)

∂ξ
assumes that

ξ is small, and may be inaccurate for ‘larger’ T∗ (since we will therefore require ξ to be commensu-
rately ‘large’). Note further that if ξ is small, then J (ξ) ≈ 1 and exp

(
ξ∧
)
≈ 1. �us,

g(ξ) ≈ log
(
T∗−1

)∨
= −ξ∗, (6.16)

and Equation (6.14) becomes
∂g(ξ)

∂ξ
= J (−ξ∗)−1. (6.17)

.

6.3.4 Loss Function: Correcting SO(3) Estimates

Our framework can be easily modi�ed to learn SO(3) corrections only. We can parametrize a similar
objective for φ ∈ R3,

L(φ,C∗) =
1

2
f(φ)TΣ−1f(φ), (6.18)
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where
f(φ) , log

(
exp

(
φ∧
)
C∗−1

)∨
. (6.19)

Equations (6.9) and (6.10) have analogous SO(3) formulations:

exp
(
(φ+ δφ)∧

)
≈ exp

(
(Jδφ)∧

)
exp

(
φ∧
)
, (6.20)

and

log (C1C2)∨ = log
(
exp

(
φ1
∧) exp

(
φ2
∧))∨

≈
{

J(φ2)−1φ1 + φ2 if φ1 small
φ1 + J(−φ1)−1φ2 if φ2 small,

(6.21)

where J , J(φ) is the le� SO(3) Jacobian. Accordingly, the �nal loss Jacobians are identical in
structure to Equation (6.8) and Equation (6.14), with the necessary SO(3) replacements.

6.3.5 Pose Graph Relaxation

In practice, we �nd that using camera poses several frames apart (i.e. ∆p > 1) o�en improves test
accuracy and reduces over��ing. As a result, we turn to pose graph relaxation to fuse low-rate correc-
tions with higher-rate visual pose estimates. For a particular window of ∆p + 1 poses (see Figure 6.3),
we solve the non linear minimization problem

{Tti,n}
∆p

i=0 = argmin
{Tti,n}

∆p
i=0∈SE(3)

Ot, (6.22)

where n refers to a common navigation frame, and where we de�ne the total cost, Ot, as a sum of
visual estimation and correction components:

Ot = Ov +Oc. (6.23)

�e former cost sums over each estimated transform,

Ov ,
∆p−1∑

i=0

eT
ti,ti+1

Σ−1
v eti,ti+1 , (6.24)
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while the la�er incorporates a single pose correction,

Oc , eT
t0,t∆p

Σ−1
c et0,t∆p , (6.25)

with the pose error de�ned as
e1,2 = log

(
T̂1,2T2T

−1
1

)∨
. (6.26)

We refer the reader to Barfoot (2017) for a detailed treatment of pose-graph relaxation.

6.4 Experiments

To assess the power of our proposed deep corrective paradigm, we trained DPC-Net on visual data
with localization estimates from the canonical indirect stereo visual odometry (S-VO) estimator we
presented in Chapter 3. In addition to training the full SE(3) DPC-Net, we modi�ed the loss function
and input data to learn simpler SO(3) rotation corrections, and simpler still, yaw angle corrections.
For reference, we compared S-VO with di�erent DPC-Net corrections to a state-of-the-art dense esti-
mator. Finally, we trained DPC-Net on visual data and localization estimates from radially-distorted
and cropped images.

6.4.1 Training & Testing

For all experiments, we used the KITTI odometry benchmark training set Geiger et al. (2013). Specif-
ically, our data consisted of the eight sequences 00,02 and 05-10 (we removed sequences 01, 03,
04 to ensure that all data originated from the ‘residential’ category for training and test consistency).

For testing and validation, we selected the �rst three sequences (00,02, and 05). For each test
sequence, we selected the subsequent sequence for validation (i.e., for test sequence 00 we validated
with 02, for 02 with 05, etc.) and used the remaining sequences for training. We note that by
design, we train DPC-Net to predict corrections for a speci�c sensor and estimator pair. A pre-trained
DPC-Net may further serve as a useful starting point to �ne-tune new models for other sensors and
estimators. In this work, however, we focus on the aforementioned KITTI sequences and leave a
thorough investigation of generalization for future work.

To collect training samples, {T∗i , Iti,ti+∆p
}Ni=0, we used a stereo visual odometry estimator and

GPS-INS ground-truth from the KITTI odometry dataset2. We resized all images to [400, 120] pixels,
approximately preserving their original aspect ratio3. For non-distorted data, we use ∆p ∈ [3, 4, 5]

for training, and test with ∆p = 4. For distorted data, we reduce this to ∆p ∈ [2, 3, 4] and ∆p = 3,
respectively, to compensate for the larger estimation errors.

Our training datasets contained between 35,000 and 52,000 training samples4 depending on test
sequence. We trained all models for 30 epochs using the Adam optimizer, and selected the best epoch

2We used RGB stereo images to train DPC-Net but grayscale images for the estimator.
3Because our network is fully convolutional, it can, in principle, operate on di�erent image resolutions with no modi�-

cations, though we do not investigate this ability in this work.
4If a sequence has M poses, we collect M −∆p training samples for each ∆p.
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based on the lowest validation loss.

Rotation

To train rotation-only corrections, we extracted the SO(3) component of T∗i and trained our net-
work using Equation (6.18). Further, owing to the fact that rotation information can be extracted from
monocular images, we replaced the input stereo pairs in DPC-Net with monocular images from the
le� camera.5

Yaw

To further simplify the corrections, we extracted a single-degree-of-freedom yaw rotation correction
angle6 from T∗i , and trained DPC-Net with monocular images and a mean squared loss.

6.4.2 Estimators

Sparse Visual Odometry

Our baseline estimator is based on the reprojection-error based maximum likelihood approach detailed
in Chapter 3. As before, we rely on the open-source viso2 package Geiger et al. (2011), to detect
and track sparse stereo image key-points, yi,c1 and yi,c0 , between stereo image pairs (assumed to be
undistorted and recti�ed). We model reprojection errors (due to sensor noise and quantization) as
zero-mean Gaussians with a known covariance, R:

ei,t = yi,c1 − f(Ttf
−1(yi,c0)) (6.27)

∼ N (0,R), (6.28)

where f(·) is the stereo camera projection function and we set R = diag( 1 1 4 ) px2. To generate an
initial guess and to reject outliers, we use three point Random Sample Consensus (RANSAC) based
on stereo reprojection error. Finally, we solve for the maximum likelihood transform, T∗t , through a
Gauss-Newton minimization:

T∗t = argmin
Tt∈SE(3)

Nt∑

i=1

eT
i,t R

−1ei,t. (6.29)

Sparse Visual Odometry with Radial Distortion

Similar to Costante et al. (2016), we modi�ed our input images to test our network’s ability to correct
estimators that compute poses from degraded visual data. Unlike Costante et al. (2016), who darken and
blur their images, we chose to simulate a poorly calibrated lens model by applying radial distortion

5�e stereo VO estimator remained unchanged.
6We de�ne yaw in the camera frame as the rotation about the camera’s vertical y axis.
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DistortedOriginal Distorted & Cropped

Figure 6.4: Illustration of our image radial distortion procedure. Le�: recti�ed RGB image (frame 280 from
KITTI odometry sequence 05). Middle: the same image with radial distortion applied. Right: distorted, cropped,
and scaled image.

to the (recti�ed) KITTI dataset using a plumb-bob distortion model. �e model computes radially-
distorted image coordinates, xd, yd, from the normalized coordinates xn, yn as

[
xd

yd

]
=
(
1 + κ1r

2 + κ2r
4 + κ3r

6
)
[
xn

yn

]
, (6.30)

where r =
√
x2
n + y2

n. We set the distortion coe�cients, κ1, κ2, and κ3 to−0.3, 0.2, 0.01 respectively,
to approximately match the KITTI radial distortion parameters. We solved Equation (6.30) iteratively
and used bilinear interpolation to compute the distorted images for every stereo pair in a sequence.
Finally, we cropped each distorted image to remove any whitespace. Figure 6.4 illustrates this process.

With this distorted dataset, we computed S-VO localization estimates and then trained DPC-Net to
correct for the e�ects of the radial distortion and e�ective intrinsic parameter shi� due to the cropping
process.

Direct Keyframe-Based Visual Odometry

Finally, we present localization estimates from a computationally-intensive keyframe-based direct vi-
sual localization pipeline largely based on the framework presented in Engel et al. (2018). �is pipeline
computes relative camera poses by minimizing photometric error with respect to a keyframe image.
To compute the photometric error, the pipeline relies on an inverse compositional approach to map the
image coordinates of a tracking image to the image coordinates of the reference depth image. As the
camera moves through an environment, a new keyframe depth image is computed and stored when
the camera �eld-of-view di�ers su�ciently from the last keyframe.

We used this expensive direct estimator as our benchmark for a state-of-the-art visual localizer,
and compared its accuracy to that of a much less computationally expensive sparse estimator paired
with DPC-Net.

6.4.3 Evaluation Metrics

To evaluate the performance of DPC-Net, we use three error metrics: mean absolute trajectory error,
cumulative absolute trajectory error, and mean segment error. For clarity, we describe each of these
three metrics explicitly and stress the importance of carefully selecting and de�ning error metrics
when comparing relative localization estimates, as results can be subtly deceiving.
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Figure 6.5: c-ATE for S-VO with and without DPC-Net.
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Figure 6.6: Mean segment errors for S-VO with and without DPC-Net.
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Figure 6.7: Top down projections for S-VO with and without DPC-Net.
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Mean Absolute Trajectory Error (m-ATE)

�e mean absolute trajectory error averages the magnitude of the rotational or translational error7 of
estimated poses with respect to a ground truth trajectory de�ned within the same navigation frame.
Concretely, em-ATE is de�ned as

em-ATE ,
1

N

N∑

p=1

∥∥∥∥log
(
T̂
−1
p,0Tp,0

)∨∥∥∥∥ . (6.31)

Although widely used, m-ATE can be deceiving because a single poor relative transform can signi�-
cantly a�ect the �nal statistic.

Cumulative Absolute Trajectory Error (c-ATE)

Cumulative absolute trajectory error sums rotational or translational em-ATE up to a given point in a
trajectory. It is de�ned as

ec-ATE(q) ,
q∑

p=1

∥∥∥∥log
(
T̂
−1
p,0Tp,0

)∨∥∥∥∥ . (6.32)

c-ATE can show clearer trends than m-ATE (because it is less a�ected by fortunate trajectory overlaps),
but it still su�ers from the same susceptibility to poor (but isolated) relative transforms.

Segment Error

Our �nal metric, segment error, averages the end-point error for all the possible segments of a given
length within a trajectory, and then normalizes by the segment length. Since it considers multiple
starting points within a trajectory, segment error is much less sensitive to isolated degradations. Con-
cretely, eseg(s) is de�ned as

eseg(s) ,
1

sNs

Ns∑

p=1

∥∥∥∥log
(
T̂
−1
p+sp,pTp+sp,p

)∨∥∥∥∥ , (6.33)

whereNs and sp (the number of segments of a given length, and the number of poses in each segment,
respectively) are computed based on the selected segment length s. In this work, we follow the KITTI
benchmark and report the mean segment error norms for all s ∈ [100, 200, 300, ..., 800] (m).

6.5 Results & Discussion

Figures 6.5 and 6.6 plot c-ATE and mean segment errors for test sequences 00, 02 and 05 for three dif-
ferent DPC-Net models paired with our S-VO pipeline. Table 6.1 summarize the results quantitatively,
while Figure 6.7 plots the North-East projection of each trajectory. On average, DPC-Net trained with
the full SE(3) loss reduced translational m-ATE by 72%, rotational m-ATE by 75%, translational mean

7For brevity, the notation log (·)∨ returns rotational or translational components depending on context.
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Figure 6.8: c-ATE and segment errors for S-VO with radially distorted images with and without DPC-Net.
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Table 6.1: m-ATE and Mean Segment Errors for VO results with and without DPC-Net.

m-ATE Mean Segment Errors

Sequence (Length) Estimator Corr. Type Translation (m) Rotation (deg) Translation (%) Rotation (millideg / m)

00 (3.7 km)1 S-VO — 60.22 18.25 2.88 11.18
Dense — 12.41 2.45 1.28 5.42
S-VO + DPC-Net Pose 15.68 3.07 1.62 5.59

Rotation 26.67 7.41 1.70 6.14
Yaw 29.27 8.32 1.94 7.47

02 (5.1 km)2 S-VO — 83.17 14.87 2.05 7.25
Dense — 16.33 3.19 1.21 4.67
S-VO + DPC-Net Pose 17.69 2.86 1.16 4.36

Rotation 20.66 3.10 1.21 4.28
Yaw 49.07 10.17 1.53 6.56

05 (2.2 km)3 S-VO — 27.59 9.54 1.99 9.47
Dense — 5.83 2.05 0.69 3.20
S-VO + DPC-Net Pose 9.82 3.57 1.34 5.62

Rotation 9.67 2.53 1.10 4.68
Yaw 18.37 6.15 1.37 6.90

1 Training sequences 05,06,07,08,09,10. Validation sequence 02.

2 Training sequences 00,06,07,08,09,10. Validation sequence 05.

3 Training sequences 00,02,07,08,09,10. Validation sequence 06.

4 All models trained for 30 epochs. �e �nal model is selected based on the epoch with the lowest validation error.

segment errors by 40% and rotational mean segment errors by 44% (relative to the uncorrected esti-
mator). Mean segment errors of the sparse estimator with DPC approached those observed from the
dense estimator on sequence00, and outperformed the dense estimator on02. Sequence05 produced
two notable results: (1) although DPC-Net signi�cantly reduced S-VO errors, the dense estimator still
outperformed it in all statistics and (2) the full SE(3) corrections performed slightly worse than their
SO(3) counterparts. We suspect the la�er e�ect is a result of motion estimates with predominantly
rotational errors which are easier to learn with an SO(3) loss.

In general, coupling DPC-Net with a simple frame-to-frame sparse visual localizer yielded a �nal
localization pipeline with accuracy similar to that of a dense pipeline while requiring signi�cantly less
visual data (recall that DPC-Net uses resized images).

6.5.1 Distorted Images

Figure 6.8 plots mean segment errors for the radially distorted dataset. On average, DPC-Net trained
with the full SE(3) loss reduced translational mean segment errors by 50% and rotational mean seg-
ment errors by 35% (relative to the uncorrected sparse estimator, see Table 6.2). �e yaw-only DPC-Net
corrections did not produce consistent improvements (we suspect due to the presence of large errors
in the remaining degrees of freedom as a result of the distortion procedure). Nevertheless, DPC-Net
trained with SE(3) and SO(3) losses was able to signi�cantly mitigate the e�ect of a poorly cali-
brated camera model. We are actively working on modi�cations to the network that would allow the
corrected results to approach those of the undistorted case.
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Table 6.2: m-ATE and Mean Segment Errors for VO results with and without DPC-Net for distorted images.

m-ATE Mean Segment Errors

Sequence (Length) Estimator Corr. Type Translation (m) Rotation (deg) Translation (%) Rotation (millideg / m)

00-distorted (3.7 km) S-VO — 168.27 37.15 14.52 46.43
S-VO + DPC Pose 114.35 28.64 6.73 29.93

Rotation 84.54 21.90 9.58 25.28

02-distorted (5.1 km) S-VO — 335.82 51.05 13.74 34.37
S-VO + DPC Pose 196.90 23.66 7.49 25.20

Rotation 269.90 53.11 9.25 25.99

05-distorted (2.2 km) S-VO — 73.44 12.27 14.99 42.45
S-VO + DPC Pose 47.50 10.54 7.11 24.60

Rotation 71.42 13.10 8.14 23.56

Remark (Limitations and Extensions). DPC-Net has several limitations and potential avenues for im-
provement. Unlike most learned models, the targets that DPC-Net seeks to replicate include some
amount of noise and complicate training (though, at the same time, may improve generalization by re-
ducing over��ing). Further, DPC-Net is a supervised-learning technique that requires accurate 6-DOF
ground-truth that may be di�cult to obtain in general. Potential extensions to the work include,

1. the application of a self-supervised approach that uses photometric consistency (rather than
ground-truth pose targets) to learn a pose correction,

2. investigation into the bene�t of adding the VO motion estimate as an auxiliary input,

3. the use of several recursive ‘loops’ wherein the network learns to further re�ne the estimate and
correct itself over several iterations.

6.6 Summary

In summary, we presented DPC-Net, an approach to learn six degree-of-freedom corrections for a
canonical VO pipeline for a particular environment and camera. Our contributions included

1. the formulation of a novel deep corrective approach to egomotion estimation,

2. a novel cost function for deep SE(3) regression that naturally balances translation and rotation
errors, and

3. an open-source implementation of DPC-Net in PyTorch8.

8See https://github.com/utiasSTARS/dpc-net.

https://github.com/utiasSTARS/dpc-net


Chapter 7

Learning Rotation with Uncertainty

Anyone who has ever used any other
parametrization of the rotation group will,
within hours of taking up the quaternion
parametrization, lament his or her misspent
youth.

Simon Altmann

Finally, building on the lessons of Sun-BCNN (Chapter 5) and DPC-Net (Chapter 6), we focus on
extracting estimates of camera rotation from visual data. To facilitate fusion with motion estimates
from an existing egomotion pipeline, we develop a network structure and loss to extract consistent es-
timates of three degree-of-freedom uncertainty alongside rotation predictions. To do this, we develop
a network structure we call HydraNet that can account for both epistemic and aleatoric sources of
uncertainty and adapt it to the problem of estimating elements of SO(3).

Remark (Associated Publications). �is work is associated with the publication

• Peretroukhin, V., Wagsta�, B., and Kelly, J. (2019). Deep probabilistic regression of elements of
SO(3) using quaternion averaging and uncertainty injection. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pa�ern Recognition (CVPR’19) Workshop on Uncertainty and Robust-

ness in Deep Visual Learning, pages 83–86, Long Beach, California, USA.

In this chapter we elaborate on the formulation and experimental validation presented within that
publication.

7.1 Motivation

Accounting for position and orientation, or pose, is at the heart of computer vision. Many algorithms
in image classi�cation and feature tracking, for example, are explicitly concerned with output that
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Figure 7.1: HydraNet produces an estimate of relative rotation (with a principled covariance matrix) that can
be fused with existing egomotion pipelines through pose graph optimization.

is robust to camera orientation. Conversely, visual odometry, structure from motion, and SLAM use
visual sensors to estimate and track the pose of a camera as it moves through some environment.

As discussed in the previous chapter, several recent authors (Clark et al., 2017; Melekhov et al.,
2017; Kendall et al., 2015) have a�empted to transfer the success of deep neural networks in many areas
of computer vision to the task of camera pose estimation. �ese approaches, however, can produce
arbitrarily poor pose estimates if sensor data di�ers from what is observed during training (i.e., it is
‘out of training distribution’) and their monolithic nature makes them di�cult to debug. Further, as
we have pointed out in previous chapters, despite much research e�ort, classical motion estimation
algorithms, like indirect stereo visual odometry, still achieve state-of-the-art performance in nominal
conditions. Nevertheless, the representational power of deep regression algorithms makes them an
a�ractive option to complement classical motion estimation when these la�er methods perform poorly
(e.g., under diverse lighting conditions or low scene texture). By endowing deep regression models
with a useful notion of uncertainty, we can account for out-of-training-distribution errors and fuse
these models with classical methods using probabilistic factor graphs. In this work, we choose to focus
on rotation regression, since many motion algorithms are sensitive to rotation errors (Peretroukhin
et al., 2018; Olson et al., 2003), and good rotation initializations can be critical to robust optimization.

7.2 Related Work

Much recent work in the literature has been devoted to replacing classical localization algorithms
with deep network equivalents. Some approaches (Clark et al., 2017; Kendall et al., 2015; Kendall and
Cipolla, 2017; Melekhov et al., 2017) learn poses directly, while others learn them indirectly as the
spatial transforms that result in minimal loss de�ned over some other domain (e.g., pixel or depth
space) (Byravan and Fox, 2017; Handa et al., 2016).

Despite this surge of research in neural-network-based replacements, some authors have neverthe-
less used deep networks to augment classical state estimation algorithms. Deep networks have been
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trained as pose correctors whose corrections can be fused with existing estimates through pose graph
relaxation (Chapter 6), and as depth prediction networks that can be incorporated into a classical
monocular pipelines to provide an initial estimate for metric scale (Yang et al., 2018). �e pseudo-
sensor we present in this chapter is perhaps closest in spirit to (Haarnoja et al., 2016) which fuses
deep probabilistic observation functions with classical models using a Kalman Filter, but focuses on
unconstrained targets and does not investigate uncertainty quanti�cation on manifolds.

In the robotics community, there has been signi�cant e�ort to leverage the tools of matrix Lie
groups to handle poses and associated uncertainty (Solà et al., 2018; Barfoot and Furgale, 2014). In
parallel, the computer vision community has developed a rich literature of rotation averaging (Hartley
et al., 2013) which focuses on principled ways to combine elements of SO(3) based on di�erent metrics
de�ned over the group.

Finally, uncertainty in the context of deep learning has been investigated through the technique of
MC Dropout (Chapter 5, Gal (2016), Kendall and Gal (2017)). Concurrently, ensembles of networks have
been shown to be a scalable way to extract uncertainty for deep regression and classi�cation (Lakshmi-
narayanan et al., 2017), while multi-headed networks have been proposed in the context of ensemble
learning (Lee et al., 2015) and for bootstrapped uncertainty in reinforcement learning (Osband et al.,
2016). Finally, an an alternate binary approach (Richter and Roy, 2017) to dealing with uncertainty is
to classify test samples as either in training distribution (i.e., cases where our model should have high
accuracy) and out of training distribution (i.e., indeterminate cases where we may revert to an alter-
nate prediction schema). �is la�er binary classi�cation can be thought of as a thresholded epistemic
uncertainty, and we believe, can be obviated through good uncertainty quanti�cation.

7.3 Approach

We develop our method for probabilistic SO(3) regression in three steps. First, we motivate why learn-
ing elements of SO(3) is particularly germane to the task of egomotion estimation. Second, we present
a multi-headed network that can regress unconstrained targets and produce consistent uncertainty es-
timates. Toward this end, we present a one-dimensional regression experiment, validating prior works
(Lakshminarayanan et al., 2017; Osband et al., 2016) that suggest a bootstrap-inspired approach pro-
vides be�er calibrated uncertainties than one based on stochastic sampling through MC dropout and
can be straightforwardly extended to incorporate both aleatoric and epistemic uncertainty. Finally,
we generalize these results to targets that belong to SO(3) by de�ning a rotation average using the
quaternionic metric, and show how we can compute anisotropic uncertainty on four-dimensional unit
quaternions.

7.3.1 Why Rotations?

We focus our a�ention on learning rotations for three primary reasons. First, rotations can be learned
without reference to scale, using monocular images without the need for metric depth estimation.
�ese images can come from cheap, light-weight imaging sensors that can be found on many ground
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HydraNet

Figure 7.2: �e HydraNet structure. Input data is passed through a main body and then through a number of
heads. Outputs are combined to produce an average and an uncertainty.

and aerial vehicles. Furthermore, many depth-equipped sensors like stereo cameras and RGB-D cam-
eras have limited depth range and produce poor depth estimates in large-scale outdoor environments.
Second, many egomotion estimation techniques, like visual odometry or visual SLAM, are particularly
sensitive to rotation estimates as small early errors have a large in�uence on �nal pose estimates (Olson
et al., 2003). Finally, the constrained nature of rotations presents several di�culties for optimization
algorithms. Indeed, if rotations are known, the general problem of pose graph relaxation becomes a
linear least squares problem that can be solved with no initial guess for translations (Carlone et al.,
2015b).

7.3.2 Probabilistic Regression and HydraNet

To begin, we will consider a (non-Bayesian) approach to uncertainty quanti�cation. Consider the one
dimensional regression task where, given an input x ∈ R, with a target output yt ∈ R, we desire a
probabilistic estimate {y, σ2} such that σ2 maximizes a likelihood model of our prediction y given that
we know yt.

HydraNet

One possible way to obtain y is to train a deep neural network, g(x). To endow this network with
uncertainty, we present a network structure we call HydraNet (see Figure 7.2). HydraNet is composed
of a large, main ‘body’, b(x;πb) = NN(x;πb) with H + 1 heads, hi(x;πhi) = NN(x;πhi), a�ached
to the output of the body. Given an input x, we get H + 1 outputs as:

{y1, ..., yH , σ
2
a} = {h1 ◦ b(x), h2 ◦ b(x), ..., hH+1 ◦ b(x)} (7.1)

where ◦ denotes function composition. To compute y, we compute the arithmetic mean of the outputs,

y =
1

H

H∑

h=1

yh(x). (7.2)
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�e head structure, however, provides several key advantages toward the goal of estimating consistent
uncertainty. Namely, it allows us to de�ne the overall uncertainty in terms of two sources, epistemic

(σe) and aleatoric (σa) (Kendall and Gal, 2017):

σ2 = σ2
e︸︷︷︸

epistemic

+ σ2
a︸︷︷︸

aleatoric

. (7.3)

Remark (Epistemic and Aleatoric Uncertainty). �e former, σe, is also sometimes referred to as model
uncertainty; it is a measure of how close a particular test sample is to known training samples. �e
la�er, σa, is inherent to the observation of the target itself. Even if the model can localize a test sample
exactly in some salient input space, the aleatoric uncertainty will prevent exact regression due to
physical processes like sensor noise.

To account for aleatoric uncertainty, we follow prior work (Haarnoja et al., 2016; Lakshminarayanan
et al., 2017) and dedicate one head of the network to regressing a variance directly through a negative
log likelihood loss under the assumption of Gaussian likelihood. �at is, we de�ne a supervised loss,

π∗hi ,π
∗
b = argmin

πi,πb

L(yh, σ
2
a, yt) = argmin

π

1

2σ2
a

(y − yt)2 + log(σ2
a), (7.4)

where yt is a target output.
To capture epistemic uncertainty, we train each head with random weight initializations and apply

losses independently during training. During test time, we compute a sample covariance over the
di�erent outputs. �at is, at test time, we compute:

σ2
e =

1

H − 1

H∑

h=1

(yh − ȳ)2 (7.5)

�is approach is inspired by the method of the statistical bootstrap (Osband et al., 2016), which predicts
population statistics by computing statistics over subsets of a sample chosen with replacement. Unlike
Osband et al. (2016), we do not train each head of the network with a bootstrapped sample, but instead
rely on the random initializations of their parameters and the method of dropout to introduce su�cient
stochasticity into their outputs. Further, unlike Lakshminarayanan et al. (2017), we do not require
numerous trained models that can incur high computational cost for complex regression tasks.

One-Dimensional Experiment

To build intuition for the advantages of HydraNet over other methods of extracting uncertainty (e.g.,
uncertainty through MC dropout (Gal and Ghahramani, 2016b)), we constructed an experiment sim-
ilar to that presented in (Osband et al., 2016). We compared HydraNet to four other approaches: (1)
direct aleatoric variance regression where the network outputs a second variance parameter that is
constrained to be positive, (2) uncertainty through dropout at test time (Gal and Ghahramani, 2016b),
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Figure 7.3: Di�erent scalable approaches to neural network uncertainty.

(3) bootstrap aggregation (or bagging) of multiple independent models, and (4) HydraNet with no
aleatoric uncertainty output.

For each method, we trained a four-layer fully-connected network to regress the output of a one-
dimensional function:

yi = xi + sin (4(xi + ω)) + sin (13(xi + ω)) + ω, (7.6)

where w ∼ N (µ = 0, σ2 = 32). Our training set consisted of 1000 samples randomly drawn from
x ∈ [0.0, 0.6]

⋃
[0.8, 1.0], while the test set consisted of 100 samples uniformly drawn fromx ∈ [−2, 2].

�e function and the train/test samples are shown in Figure 7.4a.

−2 −1 0 1 2
X

−5

0

5

Y

Train

Test

(a) Train and test set data . (b) Direct uncertainty regression (σa). (c) Uncertainty through dropout.

(d) Bootstrap aggregation. (e) HydraNet (no aleatoric uncertainty). (f) HydraNet.

Figure 7.4: A comparison of di�erent ways to extract uncertainty from deep networks. Each shade of blue
represents one standard deviation σ produced by the model.

�e direct aleatoric uncertainty regression and HydraNet methods were trained using a negative
log likelihood loss under the assumption of Gaussian likelihood, while the other methods were trained
to minimize mean squared error. We repeated training 100 times, and recorded the test-time negative
log likelihood for each method at each repetition. We summarize the results in Figure 7.5. Figure 7.4
presents representative samples from the 100 repetitions for each method. Typically, direct uncertainty
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Figure 7.5: Negative log likelihood statistics of 100 repetitions of �ve neural-network-based uncertainty esti-
mators. HydraNet performs similarly to bagging.

regression and dropout are overcon�dent in the out-of-distribution regions. We replicated the �ndings
of (Osband et al., 2016) who �nd that uncertainty with dropout does not vary smoothly and can collapse
outside of the training distribution. HydraNet combined with direct aleatoric uncertainty learning,
however, produced similar excellent likelihoods to bootstrap aggregation without requiring multiple
models.

7.3.3 Extending HydraNet to SO(3)

In order to extend the ideas of HydraNet to the matrix Lie group SO(3), we consider di�erent ways to
regress and combine several estimates of rotation. Given a network, g(·), and an input I , we consider
how to extend the ideas of HydraNet to process several outputs, gi(I), and combine them into an
estimate of a ‘mean’ rotation, R, and an associated 3× 3 covariance matrix, Σ. To produce estimates
of rotation for a given HydraNet head, we consider two options. First if g(I) ∈ R3, then we can use
the matrix exponential to produce a rotation matrix,

R = Exp (g(I)) . (7.7)

Since the capitalized exponential map Exp (·) is surjective (Barfoot, 2017; Solà et al., 2018), this ap-
proach can parametrize any valid rotation matrix. Alternatively, if g(I) ∈ R4, we can normalize it to
produce a unit quaternion that resides on S3,

q =
g(I)

‖g(I)‖ . (7.8)

As we noted in Chapter 2, unit quaternions are a double cover of SO(3), and can represent any rotation.
We choose to use this la�er parametrization because of its simple analytic mean expression that we
describe below.
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Rotation Averaging

To produce a mean of several SO(3) elements (i.e., to evaluate Equation (7.2) for rotations), we turn
to the �eld of rotation averaging (Hartley et al., 2013). Given several estimates of a rotation, we de�ne
the mean as the rotation which minimizes some squared metric de�ned over the group1,

R = argmin
R∈SO(3)

n∑

i=1

d(Ri,R)2. (7.9)

�ere are three common choices for a bijective metric (Hartley et al., 2013; Carlone et al., 2015b)
on SO(3). �e angular, chordal and quaternionic:

dang(Ra,Rb) =
∥∥∥Log

(
RaR

T
b

)∥∥∥
2
, (7.10)

dchord(Ra,Rb) = ‖Ra −Rb‖F , (7.11)

dquat(qa,qb) = min (‖qa − qb‖2 , ‖qa + qb‖2) , (7.12)

where Log (·), represents the capitalized matrix logarithm (Solà et al., 2018), and ‖·‖F the Frobenius
norm. In the context of Equation (7.9), using the angular metric leads to the Karcher mean, which
requires an iterative solver and has no known analytic expression. Applying the chordal metric leads
to an analytic expression for the average but requires the use of Singular Value Decomposition. Using
the quaternionic metric, however, leads to a simple, analytic expression for the rotation average as the
normalized arithmetic mean of a set of unit quaternions (Hartley et al., 2013),

q = argmin
R(q)∈SO(3)

H∑

i=1

dquat(qi,q)2 =

∑H
i=1 qi∥∥∥

∑H
i=1 qi

∥∥∥
. (7.13)
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Figure 7.6: We can de�ne uncertainty
in the le� tangent space of a mean ele-
ment.

�is expression is simple to evaluate numerically, and if nec-
essary, can be easily di�erentiated with respect to its constituent
parts. For these reasons, we opt to construct our SO(3) Hy-
draNet using unit quaternion outputs, and evaluate the rotation
average using the quaternionic metric.

SO(3) Uncertainty

�ere are several ways to approach uncertainty on SO(3). One
method (Carlone et al., 2015a) is to de�ne a probability density
directly on the group via the isotropic von Mises-Fisher density.
�is approach has two downsides: (1) it is isotropic and can-
not account for dominant degrees of freedom (e.g., vehicle yaw

1Although this is a natural formulation for the rotation mean, it is possible to de�ne other means in terms of absolute
errors - see (Hartley et al., 2013).
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during driving), and (2) estimating the concentration parameter
requires approximations or iterative solvers.

Instead, we opt to parametrize uncertainty over SO(3) by injecting uncertainty onto the manifold
(Forster et al., 2015; Barfoot and Furgale, 2014; Barfoot, 2017) from a local tangent space about some
mean element, q,

q = Exp (ε)⊗ q, ε ∼ N (0,Σ), (7.14)

where ⊗ represents quaternion multiplication. In this formulation, Σ provides a 3 × 3 covariance
matrix that can express uncertainty in di�erent directions. Further, given a mean rotation, q, and
samples, qi, we use the logarithmic map to compute a sample covariance matrix,

Σe =
1

H − 1

H∑

i=1

φiφ
T
i , φi = Log

(
qi ⊗ q−1

)
. (7.15)

7.3.4 Loss Function

z

�i
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Figure 7.7: We de�ne our negative log
likelihood loss in the le� tangent space
of the target unit quaternion.

As with one-dimensional HydraNet, we train a direct regres-
sion of covariance through a parametrization of positive semi-
de�nite matrices using a Cholesky decomposition2 (Hu and Kan-
tor, 2015; Haarnoja et al., 2016)). Given the network outputs of
a unit quaternion q, and a positive semi-de�nite matrix Σ, we
de�ne a loss function as the negative log likelihood of a given
rotation under Equation (7.14) (see (Forster et al., 2015)) for a
given target rotation, qt, as

LNLL(q,qt,Σa) =
1

2
φTΣ−1

a φ+
1

2
log det (Σa), (7.16)

where φ = Log
(
q⊗ qt

−1
)
. Combining the sample covariance, with the learned covariance, we

extend Equation (7.3) to
Σ = Σe + Σa. (7.17)

�is covariance estimate is designed to grow for out-of-training-distribution errors (and account for
domain shi� (Lakshminarayanan et al., 2017)) while still accounting for uncertainty within the training
set. We note that unlike Bayesian methods, we do not interpret each head as a sample from a posterior
distribution.3 Indeed, we note that in our 1D experiments, the heads have very small variance within
the training distribution. �e multi-headed structure and rotating averaging serves simply as a way
to model epistemic uncertainty when the model encounters inputs that di�er from those seen during
training. We summarize our training and test procedures in Figure 7.8 as well as Algorithm 4 and
Algorithm 5 respectively.

2Note that in all the experiments presented in this paper, we omit the o�-diagonal components of this covariance and
only learn a diagonal matrix with non-negative components.

3Notably, this means we do not scale our direct uncertainty when averaging as 1
H

Σa.
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(a) Training procedure (Algorithm 4).
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(b) Testing procedure (Algorithm 5).

Figure 7.8: �e training and testing procedures for HydraNet for unit quaternion targets.

Remark (Combining epistemic and aleatoric uncertainty). �e simple addition of the two covariance
matrices produces a valid covariance matrix (and follows prior work Kendall and Gal (2017) on com-
bining aleatoric and epistemic sources). We leave an investigation of other possible way to combine
these sources to future work.

7.4 Experiments

7.4.1 Uncertainty Evaluation: Synthetic Data

Before we embarked on training with real data, we analyzed our proposed HydraNet structure on a
synthetic world. Our goal was to produce probabilistic estimates of camera orientation based on noisy
pixel coordinates of a set of �xed point landmarks. To accomplish this, we simulated a monocular
camera observing a planar grid of evenly spaced (see Figure 7.9a) landmarks from a hemisphere sur-
rounding the grid. We aligned the monocular camera’s optical axis with the centre of the hemisphere
so that all landmarks were visible in every camera pose. At each pose, we computed noisy pixel lo-
cations of the projection of every landmark, and stacked these 2D locations as an input vector. We
generated 15000 training samples with poses that were randomly sampled from the hemisphere in the
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Algorithm 4 Supervised training for SO(3) regression
Require: Training data T , training targets qt, untrained model gθ(·) with parameters θ and H + 1

heads
Ensure: Probabilistic regression model gθ(·)

1: function TrainHydraNet(T )
2: for each mini-batch Ti do
3: Output Σa . 1st head, Chol. decom.

4: for heads 2...(H + 1) in g do
5: Output qh . Equation (7.8)
6: Evaluate NLL loss . Equation (7.16)
7: end forend
8: Backprop, update θ
9: end forend

10: return g(·)
11: end function

Algorithm 5 Testing of SO(3) regression
Require: Test sample Ij , trained model gθ(·)
Ensure: Test prediction q, covariance Σt < 0

1: function TestHydraNet(Ij , gθ(·))
2: Output Σa . 1st head, Chol. decom.

3: for heads 2...(H + 1) in g do
4: Output qh . Equation (7.8)
5: end forend
6: Compute q . Equation (7.13)
7: Compute Σe . Equation (7.15)
8: return q, Σe + Σa

9: end function
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Table 7.1: HydraNet regression results for the 7scenes dataset compared to results reported in (Kendall and
Cipolla, 2017). We report mean angular errors and the negative log likelihood (lower is be�er).

Error (deg) NLL

Scene HydraNet PoseNet HydraNet PoseNet

Chess 6.3 4.5 -6.0 —
Fire 14.9 11.3 -3.6 —

Heads 14.3 13.0 -3.9 —
O�ce 8.6 5.6 -5.4 —

Pumpkin 9.0 4.8 -5.0 —
Kitchen 8.8 5.4 -5.0 —
Stairs 11.8 12.4 -4.7 —

polar angle range of [−60, 60] degrees. For testing, we sampled 500 poses in the range of [−80, 80]

degrees, purposely widening the range to include orientations that were not part of training.

To regress the camera orientation, we constructed a �ve layer residual network and a�ached 26
heads (25 + 1 for direct uncertainty learning) to regress a probabilistic estimate of qc,w, the orientation
of the camera with respect to the world frame.

Figure 7.9b plots rotational errors φ = Log
(
q⊗ q−1

t

)
along with 3 sigma bounds based on both

the total covariance, Σt, and the direct covariance Σa. �e �nal regression estimates have empiri-
cally consistent uncertainty, composed of a static aleatoric uncertainty and an epistemic uncertainty
(Equation (7.15)) that grows when the test samples come from unfamiliar input data.

7.4.2 Absolute Orientation: 7-Scenes

Next, we used HydraNet to regress absolute orientations from RGB images from the 7-Scenes dataset
(Glocker et al., 2013). Our goal was to achieve similar errors to other regression techniques (Kendall
and Cipolla, 2017) but augment them with consistent covariance estimates. For this experiment, we
used resnet34 (He et al., 2016) (pre-trained on the ImageNet dataset) for the body of HydraNet and
a�ached 25 HydraNet heads, each consisting of two fully connected layers. We cropped and resized
all RGB images to match the expected ImageNet size and omi�ed the depth channel.

Table 7.1 presents the mean angular errors and negative log likelihoods achieved by our method.
�e HydraNet-based network produces similar angular errors to other regression methods (Kendall
and Cipolla, 2017) but with additional bene�t of consistent three-degree-of-freedom uncertainty. Note
that we spent li�le time optimizing the network itself, and note that state-of-the art errors can be
achieved using more sophisticated pixel-based losses (Brachmann and Rother, 2018). However, the
general HydraNet structure and loss can be used whenever a probabilistic rotation output is required.
Further, our results show that our covariance formulation can be used for ‘large’ rotation elements,
where techniques (e.g., (Peretroukhin and Kelly, 2018)) that assume ‘small’ corrections may fail.
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(a) Synthetic world used to illustrate our method. A monocular camera observes a 6× 6 grid of point landmarks from poses
sampled on a semi-sphere. �e test set includes poses that are outside the training distribution.
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expected.

Figure 7.9: Synthetic experiments of probabilistic rotation regression with HydraNet.
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Figure 7.10: Probabilistic regression plots for all seven datasets from the 7-Scenes dataset.
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Table 7.2: Results of fusing HydraNet relative rotation regression with classical stereo visual odometry.

m-ATE Mean Segment Errors

Sequence (Length) Estimator Translation (m) Rotation (◦) Translation (%) Rotation (◦/100m)

00 (3.7 km)

DeepVO (Wang et al., 2017b) — — — —
SfMLearner (Zhou et al., 2017) — — 65.27 6.23

UnDeepVO (Li et al., 2017b) — — 4.14 1.92
viso2-s 27.91 6.25 1.96 0.81

viso2-s + HydraNet 9.86 2.83 1.34 0.63
Keyframe Direct VO 12.41 2.45 1.28 0.54

02 (5.1 km)

DeepVO — — — —
SfMLearner — — 57.59 4.09
UnDeepVO — — 5.58 2.44
viso2-s 64.67 8.45 1.47 0.56

viso2-s + HydraNet 50.19 6.51 1.47 0.63
Keyframe Direct VO 16.33 3.19 1.21 0.47

05 (2.2 km)

DeepVO — — 2.62 3.61
SfMLearner — — 16.76 4.06
UnDeepVO — — 3.40 1.50
viso2-s 23.72 8.10 1.79 0.79

viso2-s + HydraNet 9.85 3.23 1.38 0.60
Keyframe Direct VO 5.83 2.05 0.69 0.32

Table 7.3: HydraNet regression results for the KITTI odometry dataset. We report mean angular errors and the
negative log likelihood (lower is be�er).

Sequence Mean Angular Error (◦) NLL

00 0.199 -16.84
02 0.138 -18.44
05 0.109 -19.31
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Figure 7.11: Results for KITTI sequences 00, 02 and 05. Top-down trajectory plots show localization im-
provements a�er fusion with a classical stereo visual odometry pipeline.

7.4.3 Relative Rotation: KITTI Visual Odometry

Finally, to show the bene�t of fusing deep probabilistic estimates with classical estimators, we trained
a HydraNet network to estimate relative frame-to-frame rotations on the KITTI visual odometry (VO)
benchmark. For each pair of poses, we process two RGB images (taken from the le� RGB camera) into
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Figure 7.12: Error histograms for test KITTI sequences 00, 02, and 05 on three rotational axes.

a two channel dense optical �ow image using a fast classical algorithm (Farnebäck, 2003). Compared
to using raw images, we found that using the optical �ow pre-processing greatly improved training
robustness and rotation accuracy. Since we use two-channel �ow images, the body of the network is
not pre-trained and instead contains an eight layer convolutional network. We maintained the same
head structure as the 7-Scenes experiment. Table 7.3 and Figure 7.12 detail the mean test error and
negative log likelihood for KITTI odometry sequences00, 02 and05 (chosen for their complexity and
length). For each sequence, we trained the model on the remaining sequences in the benchmark. We
found our model produced mean errors of approximately 0.1 degrees on all three test sequences. �e
covariance produced by HydraNet was consistent, spiking during yawing motions when the largest
errors occurred (see Figure 7.11). Despite its consistency, the network covariance was dominated by
Σa. We suspect that unlike the synthetic data, Σe remained small throughout the tests sets due to a
more constrained input space (RGB or �ow images, compared to pixel locations), but leave a thorough
investigation to future work.

Canonical Indirect Stereo Visual Odometry

For the classical visual odometry estimator, we use a similar pipeline to that used in the prior two
chapters based on the open-source viso2 package (Geiger et al., 2011) to detect and track sparse stereo
image key-points. In brief, our pipeline modelled stereo re-projection errors, el,ti , as zero-mean Gaus-
sians with a known static covariance, R. To generate an initial guess and to reject outliers, we used
three point Random Sample Consensus (RANSAC) based on stereo re-projection error. Finally, we
solved for the maximum likelihood transform, T∗t , through a Gauss-Newton minimization of

T∗t = argmin
Tt∈SE(3)

Nt∑

i=1

eT
i R−1ei. (7.18)
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A�er convergence, we approximate the frame-to-frame transformation uncertainty as (Barfoot, 2017):

Σvo ≈
(

Nt∑

i=1

JT
ei R

−1Jei

)−1

, (7.19)

where Jei refers to the Jacobian of each reprojection error.

Fusion via Graph Relaxation

To fuse the output of our HydraNet pseudo-sensor with our canonical VO pipeline, we used pose graph
relaxation. We describe our method brie�y and refer the reader to (Barfoot, 2017) for a more detailed
treatment. For every two poses, we de�ned a loss function based on a contribution from the estimator
and from the network, weighed by their respective covariances:

T∗1,w,T
∗
2,w = argmin

T1,w,T2,w∈SE(3)
L(T̂2,1, Ĉ2,1) (7.20)

= δξT1,2Σ
−1
vo δξ1,2 + δφT

1,2Σ
−1
hn δφ1,2 (7.21)

where δξ1,2 = Log
((

T2,wT−1
1,w

)
T̂
−1
2,1

)
and δφ1,2 = Log

((
C2,wCT

1,w

)
Ĉ
T
2,1

)
. �e estimates T̂2,1,

Σvo and Ĉ2,1, Σhn are provided by our classical estimator and the HydraNet network respectively.
Table 7.2 summarizes the results when we perform this fusion - and Figure 7.11 shows the �nal

e�ect on the trajectory for sequence 00. We found that fusing deep rotation regression with classical
methods results in motion estimates that signi�cantly out-perform other methods that rely on deep
regression alone. However, we note that even with consistent estimates, a small bias can a�ect the
�nal fused estimates (e.g., sequence 05) and removing bias is an important avenue for future work.
Further, the KITTI dataset contains few deleterious e�ects that negatively a�ect classical algorithms,
and therefore we expect that this fusion would produce even more pronounced improvements on more
varied visual data.

Remark (Limitations and Extensions). HydraNet has several limitations. For visual data, the aleatoric
component of uncertainty o�en dominates the epistemic for images that are distinct from the training
set. Further investigation is required into potential learning modi�cations that could further encourage
the heads of the network to diverge su�ciently for novel input. Further, since HydraNet learns rotation
from the same image stream as the baseline VO pipeline, correlated errors may worsen the overall
accuracy of the motion estimate a�er fusion. To address these limitations, we list three potential
extensions below.

1. In order to ensure that the output of HydraNet and the output of the canonical VO pipeline are
fused optimally, we could apply the method of covariance intersection (CI) (Julier and Uhlmann,
2007). CI is a technique to fuse measurements when the correlation between them is unknown
and provides provably consistent estimates.
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2. To improve epistemic uncertainty, we can investigate the application of a gradient blockade

(Brachmann and Rother, 2019) between the heads and body of HydraNet. A gradient blockade
would ensure that each head learns independently. At present, theH+1th head (which outputs
aleatoric covariance) indirectly connects the gradients of the remaining heads by weighting the
likelihood loss for each.

3. To further improve epistemic uncertainty, it is possible (as in Osband et al. (2016)) to train each
head with a subset of training examples (mimicking the method of the statistical bootstrap,
instead of relying solely on random initializations).

7.5 Summary

In this chapter, we described a method to regress probabilistic estimates of rotation using a deep multi-
headed network structure. We used the quaternionic metric on SO(3) to de�ne a rotation average, and
extracted anisotropic covariances by modelling uncertainty through noise injection on the manifold.

Our novel contributions were

1. a deep network structure we call HydraNet that builds on prior work (Lakshminarayanan et al.,
2017; Osband et al., 2016) to produce meaningful uncertainties over unconstrained targets,

2. a loss formulation and mathematical framework that extends HydraNet to means and covari-
ances of the rotation group SO(3),

3. and open source code for SO(3) regression.4

4https://github.com/utiasSTARS/so3 learning

https://github.com/utiasSTARS/so3_learning


Chapter 8

Conclusion

What we call the beginning is o�en the end.
And to make an end is to make a beginning.

T.S. Eliot

�is dissertation has presented several ways to improve the performance of visual egomotion
pipelines through data-driven probabilistic models that extract latent information in existing sensor
data. We presented four examples of such learned models, grouping them into those quantify un-
certainty, those that correct bias, and those that augment the pipeline by predicting complementary
information. We close with a �nal summary of novel contributions associated with each chapter, a
discussion of potential future work, and some concluding remarks.

8.1 Summary of Contributions

8.1.1 Predictive Robust Estimation

We began with an approach that constructed a heteroscedastic noise model to facilitate what we called
predictively robust estimation or PROBE. With PROBE, we contributed
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Figure 8.1: Four approaches presented in this dissertation.
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1. a probabilistic model for indirect stereo visual odometry, leading to a predictive robust algorithm
for inference on that model,

2. two di�erent approaches to constructing the robust algorithm: one baseds on k-nearest neigh-
bours (Appendix A), and one based on Generalized Kernel (GK) estimation (Chapter 4),

3. a procedure for training our model using pairs of stereo images with known relative transforms,
and

4. an iterative, expectation-maximization approach to train our GK model when the relative ground
truth egomotion was unavailable.

8.1.2 Sun-BCNN

With Sun-BCNN, we applied modern deep learning to the problem of illumination direction in outdoor
environments. In sum, the novel contributions were:

1. the application of a Bayesian CNN to the problem of sun direction estimation, incorporating the
resulting covariance estimates into a visual odometry pipeline;

2. an empirical demonstration that a Bayesian CNN with dropout layers a�er each convolutional
and fully-connected layer can achieve state-of-the-art accuracy at test time;

3. a loss function that incorporated a 3D unit-length sun direction vector, appropriate for full 6-
DOF pose estimation;

4. experimental results on over 30 km of visual navigation data in urban (Geiger et al., 2013) and
planetary analogue (Furgale et al., 2012) environments;

5. an investigation into the sensitivity of the Bayesian CNN-based sun estimate to cloud cover,
camera and environment changes, and measurement parameterization; and

6. open-source so�ware.

8.1.3 Deep Pose Corrections

Next, we generalized the results of Sun-BCNN to learn full six degree-of-freedom corrections for a
particular egomotion pipeline and a given environment with DPC-Net. Our contributions included

1. the formulation of a novel deep corrective approach to egomotion estimation,

2. a novel cost function for deep SE(3) regression that naturally balances translation and rotation
errors, and

3. an open-source implementation of DPC-Net in PyTorch.
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8.1.4 Deep Probabilistic Inference of SO(3) with HydraNet

Finally, we applied the lessons of DPC-Net and Sun-BCNN to focus on learning rotation estimates
through a network structure that incorporated both aleatoric and epistemic uncertainty. We fused
these rotation estimates with the motion estimates of a classical pipeline through pose graph opti-
mization. With this work, we contributed

1. a deep network structure we called HydraNet that builds on prior work to produce meaningful
uncertainties (including both aleatoric and epistemic components) over unconstrained targets,

2. a loss formulation and mathematical framework that extends HydraNet to means and covari-
ances of the rotation group SO(3),

3. and open source code for SO(3) regression with uncertainty.

8.2 Future Work
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Figure 8.2: �ree ways to combine learning with classical pipelines. �is dissertation presented four examples
that fall into the �rst two categories: correction and augmentation. We believe there is ample opportunity to
explore the third category, initialization, in future work.

�ere are many avenues for future work. �e fusion of classical methods with learned models
has the potential to improve many types of estimators within mobile robotics and computer vision.
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In this dissertation, we focused on improving a canonical visual odometry pipeline based on Gauss-
Newton optimization. For more general tasks like SLAM, Gauss-Newton-based optimization methods
can o�en produce sub-optimal results due to local minima in highly-non-convex loss surfaces; indeed,
their use is o�en predicated on having access to accurate initializations of state variables. To address
this de�ciency, a number of recent publications (e.g., Rosen et al. (2019)) have applied methods from
the �eld of convex optimization to SLAM and pose-graph optimization. �eir e�orts have produced
global solvers with certi�ably-optimal solutions.

We see two potential ways learning can further this thread of research: (1) by using learned models
as parametric inputs into certi�able global solvers to be�er model uncertainty and data association, and
(2) by applying learning to the problem of initialization in highly non-convex optimization problems.

�e �rst approach would leverage deep networks to parameterize some part of a loss function that
would then be optimized through global convex-optimization-based solvers (e.g., similar to Amos and
Kolter (2017)). In this way, the �nal localization and mapping results would be ‘optimal’, in the sense
that they are the global minima of a given loss function, and ‘robust’, in the sense that they adapt the
loss function parameters for a given environment.

�e second approach would apply learning to the problem of initializing state variables in the
basin of convergence of their global optima. In this dissertation, we used learning to either correct
or augment a classical pipeline, yet it may o�en be bene�cial to use these learned models as priors
built on semantic information (e.g., the con�guration of several objects like cars, or buildings). Such a
prior would act as an initialization which would then be re�ned by classical optimization techniques
(Figure 8.2). �e motivation for this approach is two-fold. First, if high metric accuracy is not de-
sired, learned methods can encode large-scale regions in a similar way to classical image retrieval
techniques—in fact, recent work (Sa�ler et al., 2019) on absolute pose regression with CNNs suggests
that techniques like PoseNet are more akin to image retrieval techniques than metric re-localization—
while be�er leveraging, or being robust to, place-speci�c landmarks, seasonal appearance changes,
and sensor de�ciencies. Second, by applying a certi�able global solver to the re�nement step, the
overall estimate can be robust to poor initializations by simply rejecting certain solutions and query-
ing the model for another initial guess. �is would obviate the need to certify the learning method
directly, and only require that the model eventually produce some reasonable initialization which can
be re�ned to a certi�ably globally-optimal state.

Remark (Dissertation as Dialectic). �e dialectic method of the Georg Hegel involves a triad: a thesis,
antithesis and synthesis. �is dissertation has been an a�empt at a cogent synthesis of the thesis posed
by the classical visual egomotion pipeline with the antithesis posed by data-driven end-to-end learning
techniques. My hope is that the synthesizing methods proposed herein will prove to be useful within
the �eld of visual state estimation, and for the broader robotics community.
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8.3 Coda: In Search of Elegance

�e phenomena of the world which have to
be explained present countless ends to us, of
which one only can be the right one; they
resemble an intricate tangle of thread, with
many false end-threads hanging from it. He
who �nds out the right one can disentangle
the whole.

Arthur Schopenhauer, Parerga and
Paralipomena

Looking back on my academic journey, I see a path from a fascination with the possible applications
of autonomous systems to a fascination with autonomy in-and-of-itself. As a budding researcher, I
saw robust, accurate perception as a means towards an end. An end which entailed truly autonomous
systems ‘perceiving’ and ‘interpreting’ their surroundings with the goal of exploring distant planets
and navigating busy urban streets. Now, however, I see ‘perception’ as an end in itself with a plethora
of fascinating mathematical, philosophical and ethical challenges that can be tackled in light of, but not
subservient to, the potential goals of some grander autonomous system. �roughout this transition,
I have become more interested not only in the �esh and blood of perception systems, but also in the
spirit of them. If perception is one of the bridges we must build to reach the land of autonomy, I am
concerned not only with the structural integrity that lets us cross it today, but also with an elegance
and rigour that lets it serve as a model for posterity.

With this in mind, I want to address a concerning shi� that has occurred in the research community
throughout my academic career. Many researchers who work on algorithms that enable autonomy (not
only in perception, but also in planning and controls) have given up on the dream of modelling the
world with the tools of Euclid, Newton and Euler in favour of methods that rely on exemplary data to
‘train’ arbitrarily complex predictive black-box models. In my estimation, this shi� has brought with
it a certain sense of resignation to the overwhelming complexity of the world. We are o�en content
to use vague notions of complexity as reason to avoid building analytic models. Instead, we turn to
crude, inscrutable surrogates of our own brains to model what we do not want to. �is, I believe, is
a tempting mistake. Although these solutions may serve as useful tools to temporarily bridge gaps in
our understanding of the world, we will inevitably deplete the low-hanging empirical fruits that they
can bear, and we will be le� with a deep sense of dissatisfaction that only elegance can �ll.

I am certainly not the �rst or the last person who has taken issue with data-driven methods. Noam
Chomsky gives the following critique of purely statistical approaches to science1. Consider the study
of bee colonies. In order to to extract interpretable models of their behaviour (e.g., there is a queen
bee, there are worker bees, etc.), one has to observe these colonies meticulously over generations. So
why not avoid that entire endeavour and use a data-driven approach? We could set up a camera to

1http://norvig.com/chomsky.html

http://norvig.com/chomsky.html
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observe a bee colony and collect data over several years. By tracking each bee, we could use the tools
of modern machine learning to construct and train a large parametric model of each of their positions.
Once complete, we could then query this model with a new image from our camera and recover, with
extreme precision, the predicted location of each bee. �is may allow us to improve honey production,
but what have we learned? Is this an elegant model of bee behaviour? Have we not just transformed
the problem of understanding the bees into one of understanding this surrogate model? Now consider
doing the same with celestial objects–Kepler be damned!

Some may argue that the entire goal of science is predicting the future states of nature, so elegance
is irrelevant. I vehemently disagree. I would rather have an interpretable model that is wrong during
speci�c situations (where I can verify that certain assumptions are violated), rather than an obfuscated
model which has vague limits to its predictive power.

If history is any judge, the models that stand the test of time are ones that are born out of our
meticulous labour and enlightened insight to extract salient principles out of the complexity of the
world. �e hope that this labour can be replaced with black-box surrogates that indirectly learn these
same principles is troubling and, in my view, unnecessary. No ma�er how much anthropomorphic
language we use to describe these surrogates (endowing them with ‘understanding’, ‘a�ention’, and
‘forgetfulness’), they will always be limited by our own ability to collect su�cient data, and by our
ability to cra� them in such a way as to consume signi�cant amounts of training exemplars without
‘over��ing’ to them. What’s more, if these models have any interaction with the world, they will also
a�ect the world, and we are commi�ing ourselves to an endless game of cat-and-mouse. Although it
may seem that our time is best spent cra�ing ever-more-clever surrogates, we will soon reach a point
where we would be be�er o� using the time and resources towards studying a particular problem more
directly.

I do not want to cast aspersions �ippantly. �e transition to data-driven approaches in computer
vision happened for good reason and with much hesitation. �e elegance of analytic models has
historically only been exceeded by their inability to model the o�en inelegant ‘real world’. At the turn
of the twenty-�rst century, roboticists were joking that the dirty secret of much of computer vision is
that it doesn’t work. Recent e�orts into combining the connectionist ideas of the 20th century with the
computational power accessible in the 21st have undoubtedly created systems that do a�ain impressive
empirical results, and there is a constant stream of new theoretical insights into the types of structures
and optimization methods that work well in a given domain.

However, as the world becomes more connected and complex with every passing day, I think it is
of utmost importance that autonomy researchers are not tempted to focus solely on empirical results at
the cost of elegant solutions. It is now well-accepted that data-driven methods are not the panacea (like
it might have seemed for a brief moment a few years ago) to all problems in autonomy. However, this
passive agreement may not be enough. Instead, we need to actively suppress the urge to try and solve a
problem �rst through general ‘learning’ methods that are becoming more and more easy to implement
and less and less easy to understand. We do not need to relinquish the dream of understanding the
world and relegate ourselves to simply predicting it by any means possible. We can instead strive to
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simplify it and interpret it. If a�er signi�cant e�ort we fail at that goal, and only then, should we turn
to data-driven learned models to �ll in the gaps in our understanding.
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Appendix A

PROBE: Isotropic Covariance Models
through k-Nearest Neighbours

A.1 Introduction

�is appendix presents our initial exploratory work on isotropic covariance modelling for image fea-
tures through k-nearest-neighbours. Unlike the work we presented in Chapter 4, here we opt to learn
a scalar weight, βi, that represents the quality of image features. We use βi to scale the covariance
of each feature during non-linear optimization. We learn this quality (βi) indirectly by computing an
egomotion estimate with a small subset of visual features and then storing the resulting position error
in a prediction space. We repeat this for a �xed amount of iterations. During testing, we map features
into this prediction space and compute a βi based on the K nearest errors in this prediction space.
Our framework is �exible enough that we do not require ground truth at every image and we can,
potentially, learn the model based on a single loop closure error.

Remark (Associated Publication). �is initial work is associated with the following publication:

• Peretroukhin, V., Clement, L., Giamou, M., and Kelly, J. (2015a). PROBE: Predictive robust esti-
mation for visual-inertial navigation. In Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS’15), pages 3668–3675, Hamburg, Germany.

A.2 �eory

To solve for the relative egomotion, Tt, between two camera frames, F−→c0 and F−→c1 , we follow the
technique described in Section 3.1.3 to convert stereo observations into point-clouds and then solve
for the maximum likelihood SE(3) transformation. We associate with each match {yi,c0 ,yi,c1} a
vector of predictors, φi,t. We compute the covariance as a function of these predictors, so that Ri,c0 =
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Ri,c1 = Ri,t = R(φi,t), and we use the same covariance function for features in both frames1,

yi,c0 ∼ N
(
ȳi,c0 ,Ri,t

)
= N

(
ȳi,c0 ,R(φi,t)

)
(A.1)

yi,c1 , ∼ N
(
ȳi,c1 ,Ri,t

)
= N

(
ȳi,c1 ,R(φi,t)

)
. (A.2)

�is then builds the following weighted least squares objective,

T∗t = argmin
T∈SE(3)

Nt∑

i=1

ei(Tt)
T Σ−1

i,t ei(Tt). (A.3)

where Σi,t is now given by,

Σi,t = DGi,c1R(φi,t)G
T
i,c1D

T + DTtGi,c0R(φi,t)G
T
i,c0T

T
t DT (A.4)

We build a model for R(φi,t) as,
R(φi,c) = β(φi,t)R̄, (A.5)

with

β(φi,c) =

(
1

εavgK

K∑

k=1

εk

)γ
, εk ∈ k-NN(φi,t), (A.6)

where {εk}Kk=1 are K egomotion errors that are ‘nearest’ to φi,c, εavg is an average error, R̄ is
a baseline nominal covariance, and γ > 1 is a hyper-parameter designed to exaggerate the e�ect of
small changes in position error.

A.3 Training

Training proceeds by traversing the training path, selecting a subset of visual features at each step,
and using them to compute an incremental position estimate. By comparing the estimated position to
the ground truth position, we compute the translational Root Mean Squared Error (RMSE), ε, and store
it at each feature’s position in the prediction space. �e full algorithm is summarized in Algorithm 6.

A.4 Testing

To use the PROBE model in a test environment, we compute the location of each observed visual
feature in our prediction space, and then compute its relative weight βi as a function of its K nearest
neighbours in the training set. For e�ciency, the K nearest neighbours are found using a k-d tree.
�e �nal scaling factor βi is a function of the mean of the α values corresponding to the K nearest
neighbours, normalized by εavg, the mean α value of the entire training set.

�e value of K can be determined through cross-validation, and in practice depends on the size
of the training set and the environment. �e computation of βi is designed to map small di�erences

1We conjecture that this is reasonable in a VO setup, where images change minimally between consecutive frames.
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Algorithm 6 Train PROBE based on a dataset (D) of pairs of input sensor data (Is) and ground truth
egomotion (Ts).
function BuildPROBEModel(D)

for l← [1, ..., Niter] do
for all Is, Ts in D do
F ← extractFeatures(Is)
{f1, . . . , fJ} ← sample(F )
T̂← computeTransform({f1, . . . , fJ})
ε← error(T̂,Ts)
{φs,1, . . . ,φs,J} ← predictor({f1, . . . , fJ})
Insert {φs,1, . . . ,φs,J} intoM and store ε at all J locations

end for
end for
returnM

end function

Algorithm 7 Compute scalar covariance factors, βi, for a set of stereo feature tracks (and IMU data),
F , given a PROBE modelM.
function UsePROBE(M, F , γ)

εavg ← averageError(M)
for all fi in F do
φi ← predictor(fi)
ε1, ..., εK ← findKNN(φi,K,M)
βi ←

(
1

εavgK

∑K
k=1 εk

)γ

end for
return β = {βi}

end function
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Figure A.1: �ree types of environments in the KITTI dataset, as well as 2 types of environments at the Uni-
versity of Toronto. We use one trial from each category to train and then evaluate separate trials in the same
category.

Figure A.2: Our four-wheeled skid-steered Clearpath Husky rover equipped with Skybotix VI-Sensor and
Ashtech DGPS antenna used to collect the outdoor UTIAS dataset.

in learned α values to scalar weights that span several orders of magnitude. An appropriate value
of γ can be found by searching through a set range of candidate values and choosing the value that
minimizes the average RMSE (ARMSE) on the training set.

A.5 Experiments

We trained and evaluated this version of PROBE in two sets of experiments. �e �rst set of experi-
ments made use of 4.5 km of data from the City, Residential, and Road categories of the KITTI dataset
(Geiger et al., 2013). In the second set of experiments, we collected indoor and outdoor datasets at the
University of Toronto Institute for Aerospace Studies (UTIAS) using a Skybotix VI-Sensor mounted
on an Adept MobileRobots Pioneer 3-AT rover and a Clearpath Husky rover, respectively (Figure A.2).
In both cases, the camera recorded stereo images at 10 Hz while the IMU operated at 200 Hz. �e
outdoor dataset consisted of a 264 m training run followed by a 302 m evaluation run, with ground
truth provided by RTK-corrected GPS. �e indoor dataset consisted of a 32 m training run and a 33 m
evaluation run through a room with varying lighting and shadows. For the indoor dataset, no ground
truth was available, so we trained PROBE using only the knowledge that the training path should form
a closed loop.

We compare PROBE to what we call a nominal visual-inertial navigation pipeline (or VINS, a
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Table A.1: Comparison of translational Average Root Mean Square Error (ARMSE) and Final Translational Error
on the KITTI dataset.

Nominal RANSAC Aggressive RANSAC
(99% outlier rejection) (99.99% outlier rejection) PROBE

Trial Type Path Length ARMSE Final Error ARMSE Final Error ARMSE Final Error
26 drive 0051 City 1 251.1 m 4.84 m 12.6 m 3.30 m 8.62 m 3.48 m 8.07 m
26 drive 0104 City 1 245.1 m 0.977 m 4.43 m 0.850 m 3.46 m 1.19 m 3.61 m
29 drive 0071 City 1 234.0 m 5.44 m 30.3 m 5.44 m 30.4 m 3.03 m 12.8 m
26 drive 0117 City 1 322.5 m 2.29 m 9.07 m 2.29 m 9.07 m 2.76 m 9.08 m
30 drive 0027 Residential 1, † 667.8 m 4.22 m 12.2 m 4.30 m 10.6 m 3.64 m 4.57 m
26 drive 0022 Residential 2 515.3 m 2.21 m 3.99 m 2.66 m 6.09 m 3.06 m 4.99 m
26 drive 0023 Residential 2 410.8 m 1.64 m 8.20 m 1.77 m 8.27 m 1.71 m 8.13 m
26 drive 0027 Road 3 339.9 m 1.63 m 8.75 m 1.63 m 8.65 m 1.40 m 7.57 m
26 drive 0028 Road 3 777.5 m 4.31 m 16.9 m 3.72 m 13.1 m 3.92 m 13.2 m
30 drive 0016 Road 3 405.0 m 4.56 m 19.5 m 3.33 m 14.6 m 2.76 m 13.9 m

UTIAS Outdoor Snowy parking lot 302.0 m 7.24 m 10.1 m 7.02 m 10.6 m 6.85 m 6.09 m
UTIAS Indoor Lab interior 32.83 m — 0.854 m — 0.738 m — 0.617 m

1 Trained using sequence 09 26 drive 0005. 2 Trained using sequence 09 26 drive 0046. 3 Trained using sequence
09 26 drive 0015.

† �is residential trial was evaluated with a model trained on a sequence from the city category because of several moving vehicles that were
be�er represented in that training dataset.

pipeline based on the point-cloud-error-based VO described in Chapter 3, but with an initial estimate
of rotation given by integrating angular velocities from an IMU), as well as a VINS with an aggressive
RANSAC routine. In the nominal pipeline, we use RANSAC with enough iterations to be 99% con�dent
that we select only inliers when as many as 50% of the features are outliers. In the aggressive case,
we increase the con�dence level to 99.99%. When PROBE is used, we apply a pre-processing step that
makes use of the rotational estimate from the IMU to reject any egregious feature matches by thresh-
olding the cosine distance between pairs of matched feature vectors. We assume small translations
between frames and typically set the threshold to reject feature vectors that are separated by more
than �ve degrees.

For feature extraction, matching, and sparse optical �ow calculations, we use the open source
vision library viso2 (Geiger et al., 2011). For all prediction space calculations, we use features in the
le� image of the stereo pair.

To evaluate PROBE, we run a nominal VINS pipeline on a given test trial, tune the RANSAC thresh-
old to achieve reasonable translation error (< 5% �nal dri�), then repeat the trial with the aggressive
RANSAC procedure. Finally, we run this procedure again, this time disabling RANSAC completely
and applying our trained PROBE model (with pre-processing) to each observed feature. Table A.1
compares the performance of each trained PROBE model to that of the nominal VINS pipeline and
aggressive-RANSAC VINS.
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Visual Odometry Implementation
Details

�is appendix presents further implementation details for a standard VO pipeline. You can �nd a
python implementation of this in the open-source framework pyslam1 developed by myself and
Lee Clement.

B.1 Overview

In brief, the VO pipeline consists of the following steps.

1. De�ne an initial camera pose, Tcw, that relates the �rst camera frame, F−→c0 , to a world frame
F−→w.

2. Given an ideal calibrated stereo camera, stereo match and track a set ofNt landmarks, {yi,c0 ,yi,c1}
Nt
i=1,

between the initial stereo camera pose, F−→c0 , and a subsequent frame F−→c1 . �is step is non-trivial
in general, but for our work, we rely on the framework viso2 to provide these putative corre-
spondences.

3. Perform RANSAC to reject outlier tracks. Compute candidate transforms Tc1c0 using the method
of Umeyama (1991) (further elaborated in Barfoot (2017)) to reject outlying tracks.

4. Select initial guess of the relative transform, T
(0)
c1c0 = T

(0)
t . �is can either be set to 1 or given

by the model with the highest amount of inliers from the previous step. Starting at this initial
operating point, use iterated reweighted least squares (IRLS) to solve the M-estimation problem,

T∗c1c0 = T∗t = argmin
T∈SE(3)

N∑

i=1

ρ

(√
eiT Σ−1

i ei

)
= argmin

T∈SE(3)

N∑

i=1

ρ(εi), (B.1)

1http://github.com/utiasSTARS/pyslam
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where ρ(·) can be selected based on empirical performance, ei is the reprojection error, ei(Tt) =

yi,c1 − f(Ttf
−1(yi,c0)), and f is the stereo camera model.

5. Update the current camera pose as:

Tcw ← T∗tTcw. (B.2)

B.2 Solution with Robust Loss

In order to solve Equation (B.1), we use the method of IRLS, and solve the transformed problem,

T∗ = argmin
T∈SE(3)

1

2

N∑

i=1

ei
T Miei, (B.3)

where Mi(T) , 1
εi

∂ρ

∂εi
Σ−1
i . To minimize this, we linearize about an operating point T

(n)
t and solve

for an optimal update δξ∗ by minimizing the linear least squares problem:

δξ∗ = argmin
δξ∈R6

L(δξ) =
1

2

Nt∑

i=1

(ei − Jiδξ)T Mi (ei − Jiδξ) (B.4)

where we note that all subscripted elements are functions of the operating point (i.e., ei = ei(T
(n)
t ),

Ji = Ji(T
(n)
t ) and Mi = Mi(T

(n)
t )). �is is solved by the normal equations,

δξ∗ =

(
Nt∑

i=1

JT
i MiJi

)−1( Nt∑

i=1

JT
i Miei

)
. (B.5)

Given δξ∗, we update the operating point as

T
(n+1)
t = Exp (δξ∗) T

(n)
t , (B.6)

and iterate until convergence (the exact convergence criterion is typically not an important factor in
relative egomotion estimation).

B.3 Deriving the Necessary Jacobians

To evaluate Equation (B.5), we require the matrix Ji. We can derive Ji for a reprojection error, ei(Tt) =

yi,c1 − f(Ttf
−1(yi,c0)), by and making the following �rst order approximations:

Tt ≈ (1 + δξ∧)T
(n)
t (B.7)

f(pi) ≈ f(p
(n)
i ) + Jp(p

(n)
i )δp, (B.8)
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where Jp(p
(n)
i ) =

∂f

∂p

∣∣∣∣
p

(n)
i

and p(n)
i = T

(n)
t f−1(yi,c0). Using these de�nitions we can relate small

perturbations of p(n)
i to perturbations in our state T

(n)
t ,

p
(n)
i + δp ≈ (1 + δξ∧)T

(n)
t f−1(yi,c0) (B.9)

= T
(n)
t f−1(yi,c0)

︸ ︷︷ ︸
p

(n)
i

+δξ∧T
(n)
t f−1(yi,c0)

︸ ︷︷ ︸
p

(n)
i

(B.10)

= p
(n)
i + δξ∧p(n)

i (B.11)

= p
(n)
i + (p

(n)
i )�δξ (B.12)

which allows us to write δp = (p
(n)
i )�δξ. Here we have used the notation from Barfoot (2017), where

the (·)� operator is de�ned on homogeneous points as follows:

p� =

[
p

1

]�
=

[
1 −p∧

0T 0T

]
. (B.13)

�is leads to the convenient expression, ξ∧p = p�ξ, that we use above. Combining everything, we
have:

ei(δξ) ≈ yi,c1 − f(p
(n)
i )

︸ ︷︷ ︸
ei(T

(n)
t )

−Jp(p
(n)
i )δp (B.14)

= ei(T
(n)
t )− Jp(p

(n)
i )(p

(n)
i )�︸ ︷︷ ︸

Ji

δξ, (B.15)

which concludes our derivation. In summary, to evaluate Equation (B.5), we use the expression,

Ji = Jp

(
T

(n)
t f−1(yi,c0)

)(
T

(n)
t f−1(yi,c0)

)�
. (B.16)

Finally, for stereo camera model de�ned with the origin in the le� camera frame,

yi,c =



ul

vl

d


 = f(pi,c) = f(




x

y

z

1




) == M
1

z
pi,c, (B.17)

where

M =



f 0 cu 0

0 f cv 0

0 0 0 fb


 , (B.18)
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the Jacobian, Jp =
∂f

∂p
is given by

Jp =
∂f

∂p
=




f
z 0 −f x

z2 0

0 f
z −f y

z2 0

0 0 −f b
z2 0


 . (B.19)
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