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1. Introduction

Long-term metric localization is an essential capabil-
ity of autonomous mobile robots, but remains challeng-
ing for vision-based systems in the presence of appear-
ance change caused by lighting, weather or seasonal vari-
ations. While experience-based mapping [1, 7] has proven
to be an effective technique for enabling visual localiza-
tion across appearance change [9, 10], the number of expe-
riences required for reliable long-term localization can be
large, and methods for reducing the necessary number of
experiences are desired. Taking inspiration from physics-
based models of color constancy [12], we propose a method
for learning a nonlinear mapping from RGB to grayscale
colorspaces that maximizes the number of feature matches
for images captured under varying lighting and weather
conditions. Our key insight is that useful image transfor-
mations can be learned by approximating conventional non-
differentiable feature matching algorithms with a differen-
tiable learned model. Moreover, we find that the generaliza-
tion of appearance-robust RGB-to-grayscale mappings can
be improved by incorporating a learned low-dimensional
context feature computed for a specific image pair. Using
synthetic and real-world datasets, we show that our method
substantially improves feature matching across day-night
cycles and presents a viable strategy for improving the effi-
ciency of experience-based visual localization.

2. Technical Approach

Our goal in this work is to learn a nonlinear transfor-
mation f : R3 → R mapping the RGB colorspace onto a
grayscale colorspace that explicitly maximizes the number
of feature matches for a given image pair. We investigate
two approaches to formulating such a mapping: 1) a sin-
gle function to be applied to all incoming images, similarly
to [2, 8, 11]; and 2) a parametrized function tailored to the
specific image pair to be used for localization, where the
parameters are derived from the images themselves.

Ideally we would like the learned colorspace transforma-
tion to be tied to the performance of the target feature detec-
tor/matcher. However, the most commonly used feature de-

tectors/matchers in robotics rely on non-differentiable com-
ponents such as nearest-neighbors search and RANSAC [4],
which makes gradient-based optimization infeasible. In this
work we learn an objective function by training a deep con-
volutional neural network (CNN) to act as a differentiable
proxy to the localization front-end. Specifically, we train a
siamese CNNMθ to predict the number of feature matches
for a large set of image pairs, where the training targets
are generated using a conventional non-differentiable fea-
ture detector/matcher algorithm D such as libviso2 [6].
We trainMθ to approximate D by minimizing the squared
error of the prediction for overlapping image pairs (I1, I2):
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This formulation naturally admits a self-supervised training
approach as training targets can be generated on the fly by
D. We then use the trained proxy network to define a fully
differentiable objective function, which we can use to train
a nonlinear colorspace mapping using gradient-based meth-
ods. Figure 1 summarizes our full data pipeline visually.

We compare two approaches to formulating the col-
orspace transformation. The first is a generalization of the
color constancy transformation proposed in [12]:

F = α logR+ β logG+ γ logB, (2)

β =
[
α β γ

]T
= Eφ(I1, I2). (3)

where Eφ is a pairwise encoder network. The second is
to replace Equation (2) with a learned transformation Tψ
parametrized as a multilayer perceptron (MLP). In both
cases, we optimize the joint model by minimizing

L(φ,ψ) = 1
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alternating between optimizing Equations (1) and (4) at
each iteration. We refer to the physics-based model as
“SumLog” and “SumLog-E”, where the latter uses the en-
coder network Eφ to derive the β and the former uses a con-
stant value. We refer to the equivalent MLP-based models
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Figure 1: We train a CNN to estimate the number of feature matches for a given feature detector and image pair, and use the
trained model as a differentiable loss function to learn a colorspace transformation that maximizes the number of matches.
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Figure 2: Box-and-whiskers plots of inlier feature matches
for corresponding image pairs using each transformation.

as “MLP” and “MLP-E”, and the standard weighted average
grayscale transformation as “Gray”.

3. Experiments

We conduct experiments on the Virtual KITTI
(VKITTI) dataset [5] and the UTIAS In The Dark
(InTheDark) dataset [10], both of which exhibit substan-
tial variation in illumination conditions. Figure 2 shows
the distributions of inlier libviso2 feature matches
using each RGB-to-grayscale transformation for nearby
image pairs from sequences VKITTI/0020 (Sunset to
Morning) and InTheDark/0041 (Night to Day). We
observe that all four transformations more than double the

median number of feature matches for VKITTI/0020,
and that the gains are only slightly higher using the pairwise
encoder. These results are consistent with the findings of
[2, 3, 8, 11], where one or two sets of parameter values
were sufficient to achieve good performance across varying
daytime conditions. For InTheDark/0041, we note
that while both the SumLog and MLP transformations
increase the median number of feature matches, the use
of the pairwise encoder network provides a substantial
performance boost to both methods. We attribute this
difference to a wider variety of illumination conditions
in the data, where a single transformation is unlikely to
perform well under all conditions.

We also note that the MLP-E transformation generally
performs similarly to the SumLog-E transformation on both
datasets. Qualitatively, we observed that the MLP and
MLP-E methods produce output images that are visually
similar to their SumLog counterparts. This suggests that
a weighted sum of log-responses may in fact be an opti-
mal solution for this problem, and that a careful choice of
weights is key to good cross-appearance feature matching.

4. Conclusions
This paper presents a method for learning RGB-to-

grayscale colorspace mappings that explicitly maximize the
number of feature matches for a given image pair, feature
detector/matcher and operating environment. By training a
CNN to approximate the behavior of a conventional non-
differentiable feature detector/matcher, we learn a fully dif-
ferentiable loss function that can be used to train a use-
ful image transformation. We evaluate our approach using
both physically motivated colorspace transformations and
trainable transformations and demonstrate substantially im-
proved feature matching performance at test time on both
synthetic and real long-term vision datasets exhibiting se-
vere illumination change. We find that the best perfor-
mance is consistently achieved using a physically motivated
weighted sum of log-responses with the weights derived
from a pairwise context encoder network.
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