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Abstract—Accurate and energy-efficient navigation and
localization methods for autonomous underwater vehicles
continues to be an active area of research. As interesting as
they are important, ocean processes are spatiotemporally
dynamic and their study requires vehicles that can maneu-
ver and sample intelligently while underwater for extended
durations. In this paper, we present a new technique for
augmenting terrain-based navigation with physical water
data to enhance the utility of traditional methods for
navigation and localization. We examine the construct of
this augmentation method over a range of deployment
regions, e.g., ocean and freshwater lake. Data from field
trials are presented and analyzed for multiple deployments
of an autonomous underwater vehicle.

I. INTRODUCTION
Effective study of ocean processes requires long-term

sampling efforts (weeks to months) that match the dura-
tion of the respective oscillation patterns. This requires
persistent, autonomous underwater vehicles that have
similarly long deployment durations, and specifically,
vehicles that can remain submerged for data collection
for long periods of time, e.g., [1]- [4]. Our work is
motivated by the desire to enable intelligent data collec-
tion of complex dynamics and processes that occur in
coastal ocean environments to further our understand-
ing and prediction capabilities. Of particular interest is
the formation and evolution of Harmful Algal Blooms
(HABs) in the Southern California Bight (SCB); an
oceanic region contained within 32◦ N to 34.5◦ N and
−117◦ E to −121◦ E. This region is under continued
study to uncover the connections between small-scale
biophysical processes and large-scale events related to
algal blooms, specifically blooms composed of toxin-
producing species (i.e., HABs) [5]- [7].

The spatiotemporal dynamics of the ocean environ-
ment, coupled with limited communication capabilities,
make navigation and localization difficult, especially in
coastal regions where the majority of interesting phe-
nomena occur. To add to this, the interesting features
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Fig. 1. YSI EcoMapper Autonomous Underwater Vehicle executing
a mission off the coast of Santa Catalina Island.

are themselves spatiotempoally dynamic, and effective
sampling requires a good understanding of vehicle lo-
calization relative to the sampled feature. Furthermore,
these interesting phenomena are usually identified by
unique features in the ocean, e.g., significant bathymet-
ric relief, an unstratified water column, or significantly
different physical water parameter values. Here, we are
interested in the utility of these unique features to aid in
localization and navigation for underwater vehicles.

Underwater vehicles, like the YSI EcoMapper seen
in Fig. 1, commonly perform underwater navigation via
dead reckoning using an accelerometer, magnetometer
and depth sensor for feedback. However, these instru-
ments are subject to large drift, leading to unbounded un-
certainty in location. When confronted with the dynamic
environment of the ocean, a state estimate of location can
deviate significantly from the actual location; sometimes
on the order of kilometers. Two common methods of
correcting this issue are 1) surface more frequently for a
GPS fix, or 2) integrate more accurate, energy intensive
sensors, such as Doppler velocity loggers (DVLs). Both
of these methods have drawbacks. Continually surfacing
for a GPS fix takes away from sampling time and
requires that more energy be used for communications.
Surfacing also poses a physical threat to the vehicle, as
it might accidentally surface in a hazardous location,



e.g., a shipping lane. Using more powerful sensors
consumes the finite energy supply of an AUV faster
and significantly reduces the deployment duration. To
optimize time spent collecting data with these vehicles, it
is desirable to find alternative means of reducing position
uncertainty while underwater.

Here, the proposed method for increasing navigational
accuracy and reducing uncertainty in navigation is im-
plementing Terrain-Based Navigation (TBN) in an un-
derwater environment. Prior to satellite-based navigation,
e.g., GPS, long-distance navigation systems were devel-
oped for missiles [8]. Data from an embedded altimeter
were compared to ground elevations that were provided
in a stored map or look-up table. The navigational
accuracy of this method is dependent upon both the
resolution of the underlying topographic map and the
accuracy of the elevation measurement; each very good
for terrestrial applications. This system became redun-
dant after the introduction of GPS, although it is still
a useful navigational aid for GPS-denied environments,
e.g., underwater. Until recently, the utility of this Terrain-
Based Navigation (TBN) for underwater vehicles was
low due to the poor resolution of bathymetric maps.
Updated bathymetry maps with higher resolution provide
motivation for revisiting the application of this method
for low-power, accurate navigation underwater, see e.g.,
[9].

Even with higher resolution bathymetry maps, tradi-
tional TBN alone can result in significant navigational
error, especially in regions of little to no vertical relief.
To enhance the ability to navigate and localize, we
developed an augmented TBN that incorporates physical
science data, i.e., water parameters such as temperature,
salinity, pH, etc., to enhance the topographic map that the
vehicle uses to navigate under the traditional TBN frame-
work [10]. In this navigation scheme the bathymetry data
are combined with the physical science data to enrich the
uniqueness of the underlying terrain map, see e.g., Fig.2.
This method of localization has been evaluated with data
gathered at multiple locations in both freshwater lakes
and oceanic environments. Results from a deployment in
Big Fishermans Cove, Santa Catalina Island is presented
in [10]; these and other preliminary results from our
Augmented Terrain Based Navigation (ATBN) have been
promising.

The primary issue that arises in using the proposed
ATBN methodology is that the physical water parame-
ters, e.g., temperature and salinity, are spatiotemporally
dynamic. Thus, a generated terrain map based solely
or partially on these variables will change in space and
time. An investigation of the spatiotemporal variability
within the proposed method is currently under investi-
gation by the authors and is ongoing work. The focus
of this paper is to describe the proposed technique and

(a) (b)
Fig. 2. Example of an augmented terrain map using a combination of
science parameters along with bathymetry information. Fig. (a) is the
resulting terrain map, and Fig. (b) is the auto-correlogram. The data
for the figures was collected off Santa Catalina Island, CA.

present initial results in creating augmented terrain maps
for use in navigation and localization.

II. BACKGROUND

A. Terrain-Based Navigation

A detailed survey of research and current challenges
in underwater navigation, summarizing existing work on
TBN for underwater vehicles, is provided in [11]. One
clearly identified shortcoming of TBN in the aquatic
environment is the lack of accurate, high-resolution maps
of the sea floor in many regions. Additionally, sensor
limitations, especially the limitations of optical range
sensors, substantially restrict TBN underwater. In [11],
it is concluded that improved navigation will enable new
missions that would previously have been considered
infeasible or impractical.

Recent work by Lagadec on TBN under ice [12] has
demonstrated the feasibility of using a particle filter for
long term glider navigation. Lower relief maps of regions
above the arctic circle with a resolution of 2 km were
sufficient to navigate with reasonable accuracy (∼ 1
km accuracy, with a mean accuracy of approximately
8 km in one simulation). The study suggests that for
real deployments, technological advances would be nec-
essary to achieve the required navigation performance.
However, higher relief bathymetric maps could facilitate
the implementation of a TBN that operates online, in real
time. The primary limitation of the technique presented
in [12] was the lack of an accurate terrain map, which
does not invalidate the methodology used. A number
of other studies have utilized particle filters as part
of a TBN framework for underwater vehicles [12]-
[15]. The particle filter is suitable as a solution to the
TBN problem because it is probabilistic (and therefore
captures environmental uncertainty), and because it nat-
urally incorporates the property that the longer a path is
traversed, the more likely a single solution will emerge.



B. Improving TBN

To further improve TBN, a method of creating an
augmented terrain map that combines both bathymet-
ric information and physical water data collected was
proposed and tested, with results presented in [10]. The
assumption that including physical water data into the
terrain map provides a reliable model comes from the
concept of Environmental or Ecological Niche Models.
Ecological Niche Modeling is derived from one of the
primary goals of ecology, which is to map species distri-
bution over geographic ranges and be able to use predic-
tive models to infer where various species are likely to be
found [16]- [19]. Environmental niche modeling uses a
wide range of data to generate a map of a locale showing
only chemical and physical parameters that have either
been measured or interpolated from direct measurements
[20]. Specifically, niche modeling is a method to classify
geographic locales as either being habitable or inhabit-
able by certain species. By monitoring specific physical
parameters of an environment and understanding the
tolerances of a certain species, it is possible to model
where that species will most likely be present [19]- [23].
Here, we hypothesize that these niches may also be
utilized for underwater vehicle navigation. At this stage,
we will assume that the environment is static in both
space and time; however, the spatiotemporal dynamics
of observed ecological niches suggests that they exhibit
periodicity or a predictable stochastic behavior, see e.g.,
[24].

III. METHODOLOGY

The basic process for creating a terrain map from
the scientific and bathymetry data is to first generate
a base map for each data parameter being collected.
Then, determine a weighting schema that enables the
maps to be brought together via linear combination
while maximizing the contrast of the resulting terrain
map. More specifically, the raw data are first treated
for outliers with the k-nearest neighbor technique, and
individual scalar fields are created for each data pa-
rameter (temperature, pH, turbidity, chlorophyll, blue-
green algae, depth and dissolved oxygen). The spaces
between data points are filled in by using the bi-harmonic
spline interpolation1. This method was used because it
is also able to extrapolate outside of the convex hull
and generate smooth surfaces. The resulting map is a
matrix, X, where each element (i,j) corresponds to the
coordinate (x,y) where the value was measured. These
matrices were normalized by subtracting the minimum
value from each element of the matrix, then dividing by
the new maximum value.

1MATLAB griddata method ’v4’

N = X−min(X) (1)

M =
N

max(N)
, (2)

Here M is the normalized matrix.
Bathymetric and physical water data were gathered

on the surface of unique water bodies through multiple
deployments of the vehicle. These deployments were
performed in different bodies of water: (i) Big Fisher-
man’s Cove, Santa Catalina Island (33◦44’N 118◦48’W),
CA, USA (coastal ocean bay); (ii) Lake Nighthorse
(37◦13’N 107◦55’W), Durango, CO, USA (large fresh
water lake); (iii) Monterey Bay (36◦48’N 121◦47’W),
CA, USA (coastal ocean bay). The vehicle navigated on
the surface of the water to ground-truth measurements
via GPS collecting data referenced to GPS locations.
The combination of the parameters with the associated
weights provides the “bumpiest” scalar field (i.e. the
scalar field with the most likelihood that a given tra-
jectory across it is unique with respect to all others). To
assess this characteristic, we propose a measure called
global correlation.

We assume that the lower the spatial auto-correlation,
the higher the randomness of the spatial field. Auto-
correlation of each matrix (equation (2)) is then calcu-
lated and its peak value is replaced by 0. The sum of
the absolute values of the matrix is the global correlation
value. We seek the appropriate parameters for each of the
surveyed bodies of water using combinations of physical
water parameters and bathymetric information to ensure
that each and every spatial path through a water body
is defined and unique. Then, we determine similarities
among them and the set of coefficients that maximize
their variability. We tested two different distributions to
find the appropriate weights for the parameters. The first
is the Simple Simplex Distribution and the second is the
Dirichlet Distribution.

1) Simple Simplex Distribution: Let
α={α1, α2, . . . , αn}, where αi > 0,

∑n
i=1 αi = 1

and n is the number of water parameters, be the set of
coefficients that minimizes the spatial auto-correlation.
A suitable terrain map computed from our proposed
approach for navigation and localization is given by
S = α1 ∗ var1 + α2 ∗ var2 + ... + αn ∗ varn, where
S represents a linear combination of the parameters
considered. The set of coefficients is obtained using
uniformly random sampling from unit simplex [25].
Over a random multinomial probability distribution,
an array X={x1, . . . , xa−1} with unique entries from
a uniformly random sampling is created with values
varying among {1, 2, . . . ,M−1}, where M is the
maximum integer, without replacement. The first value
is x0 = 0 and the last is xa = M . Array X is then sorted



in ascending order. Let Y ={y1, y2, . . . , yi, . . . , yM−1}
with yi being defined as xi+1 − xi, ∀i ∈ {1, 2, . . . , a}.
Each entry of array Y is then divided by the sum of all
the values of Y so that the new sum is equal to 1.

2) The Dirichlet distribution: Next, a weighting
schema for the parameters is determined through Dirich-
let Distribution, which is a reference distribution to
model vectors of weights adding to 1. It is a probability
density function over the simplex and can model prior
knowledge of the weights of the parameters. It is defined
as:

p(α|γ) =
Γ(

∑n
i=1 γi)∏n

i=1 Γ(γi)

n∏
i=1

αγi−1
i (3)

where γ is the vector of parameters of the Dirichlet
distribution with γi > 0; α={α1, α2, . . . , αn}, αi > 0
and

∑n
i=1 αi = 1, is the vector in the n-dimensional

probabilistic simplex representing the weights of the pa-
rameters; n is the number of parameters to be considered
for the generation of the scalar fields and Γ denotes the
gamma function. The individual scalar fields from each
parameter are brought together via a linear combination
with their respective weights to create a single scalar
field that is the terrain map. This map is given by S =
α1 ∗ var1 + α2 ∗ var2+. . . +αn ∗ varn. The weighting
schema is iterated on thousands of times until the global
correlation converges to a minimum value.

3) Linear Combination: For all variables, let
α={α1, α2, . . . , αn} be the set of coefficients for each
science data considered for this study. A suitable terrain
map computed from our proposed approach for naviga-
tion and localization is given by the linear combination
S presented in Equation. 4

S =α1 ∗ temperature+ α2 ∗ pH+

α3 ∗ turbidity + α4 ∗ chlorophyll+
α5 ∗ depth+ α6 ∗ dissolved_oxygen+

α7 ∗ salinity

(4)

Here, S represents a linear combination of the science
parameters considered, α is the set of coefficients that
minimizes the spatial auto-correlation.

We compared the global correlation value consider-
ing: (i) only bathymetric information, (2) only science
parameters, (3) science parameters and depth combined
for each deployment location.

The results showed that bathymetric information is
a viable approach for creating terrain maps. Here, we
examine bathymetric information using the same meth-
ods used for addressing questions 1, 2 and 4. Finally,
the fourth and last test is addressed by combining the
bathymetric infomation with the science parameters as
a new approach. Equation 4 is extended to include

depth as another variable and analyzing the effect of the
bathymetry structure.

Any traditional TBN algorithm can then be applied
to this augmented terrain map. It is also assumed that
the combination of multiple parameters will produce a
terrain map that is more unique than a terrain map com-
posed of a single parameter; thus, improving the ability
to reduce navigation uncertainty while underwater. The
complete technique of ATBN would involve surveying
an area, determining the weights of data parameters,
and generating a terrain map through post processing.
The vehicle is then provided with the terrain map
and weightings to perform ATBN during subsequent
deployments. Research into how to efficiently update this
underlying map is presented in [26].

IV. RESULTS

Using the data from on-board sensors, terrain maps
for localization and navigation were generated for use
in later missions. Preliminary results using bathymetric
data in [27] showed that global correlation is low. When
physical water parameters are combined with bathymet-
ric information instead of using either one independently,
a lower global correlation value is obtained. Results in
different bodies of water are shown in this section.

1) Big Fisherman’s Cove, Santa Catalina Island, Cal-
ifornia: Depth and temperature are the most significant
parameters in the ocean, in the case of Big Fisherman’s
Cove, Santa Catalina Island, California, USA, when the
aim is higher variability. Salinity represented 0.43% of
importance in generating the most adequate scalar field,
while temperature represented 18.7%, turbidity 0.26%,
depth 80.6% and 0.01% for the remaining variables.
Figure 3 shows the auto-correlogram of the scalar field
and figure 4 show the actual scalar field for the surveyed
area at Big Fisherman’s Cove.

TABLE I
MINIMUM AND MAXIMUM VALUES OF THE PARAMETERS

CONSIDERED AT BIG FISHERMAN’S COVE, SANTA CATALINA
ISLAND.

Parameter Minimum Maximum
Temperature 21.7 23.64
Salinity 5.99 34.01
pH 8.16 8.56
Dissolved
Oxygen

8.12 9.66

Turbidity 0 4.99
Depth 1 29.99
Chlorophyll 9.7 47.7

2) Lake Nighthorse, Colorado: Depth and temper-
ature are the most significant parameters in the case
of Lake Nighthorse, Durango, Colorado, USA (large
fresh water lake) when the aim is higher variability.
Depth represented 69% of importance in generating the



Fig. 3. Auto-correlogram of the scalar field at Big Fisherman’s Cove,
Santa Catalina Island.

Fig. 4. Scalar field map at Big Fisherman’s Cove, Santa Catalina
Island.

most adequate scalar field, while temperature represented
30%, and 1% for the remaining variables. Figure 5 show
the auto-correlogram of the scalar field and figure 6
show the actual scalar field for the surveyed area at Lake
Nighthorse.

TABLE II
MINIMUM AND MAXIMUM VALUES OF THE PARAMETERS

CONSIDERED AT LAKE NIGHTHORSE, CO.

Parameter Minimum Maximum
Temperature 12.9 13.02
pH 8.32 8.71
Dissolved
Oxygen

8.39 8.47

Turbidity 0.8 3.9
Depth 6.71 39.53

3) Monterey Bay, California: Depth and temperature
are the most significant parameters in the ocean, in the

Fig. 5. Auto-correlogram of the scalar field at Lake Nighthorse, CO.

Fig. 6. Scalar field map at Lake Nighthorse, CO.

case of Monterey Bay, CA, USA, when the aim is higher
variability. Depth represented 94.1% of importance in
generating the most adequate scalar field, while tem-
perature represented 5.8% and 0.1% for the remaining
variables. Figure 7 show the auto-correlogram of the
scalar field and figure 8 show the actual scalar field for
the surveyed area at Monterey.

Results showed that for coastal ocean bay, as seen at
Big Fisherman’s Cove and Monterey Bay, in California,
USA, the parameters depth, temperature and salinity are
among the most important ones. The importance is due
to the effect on the global autocorrelation that becomes
lower when these parameters have a certain weight in
the construction of the scalar field.

V. CONCLUSION

The developed approach is an alternate way of tar-
geting sample acquisition or navigating through space,



Fig. 7. Auto-correlogram of the scalar field at Monterey Bay, CA

Fig. 8. Scalar field map at Monterey Bay, CA

and relaxes the dependence on geographic coordinates,
enabling the design of methods for improving navigation
and sampling within a dynamic feature. The utility of
our proposed method is currently assessed by localizing
a trajectory within a computed augmented terrain map.

A map constructed using in situ science data in com-
bination with bathymetry was developed for improving
navigation and localization accuracy for aquatic vehicles.
When physical data, such as, temperature and salinity,
are combined with bathymetric information, the global
correlation decreases leading to greater variability and
a more suitable map for localization and navigation
using the proposed augmented terrain-based navigation
technique. Any random trajectory extracted from the
terrain map will be unique to that area. This is what
makes localization possible though an augmented TBN.
In GPS-denied environment, as is the case underwater,
augmented TBN with bathymetric and science infor-

mation poses a promising method for localization and
navigation. The utility of TBN for underwater vehicles
became valuable with the increase of resolution of bathy-
metric maps, and as the proposed method further refined
these maps with the supplementation of more data.

VI. FUTURE WORK

For most ocean science applications, there is a need
for underwater vehicles to navigate within a spatiotem-
porally dynamic environments and to gather data of
high scientific value. Therefore, it will be interesting to
investigate methods that are able to adequately propagate
critical ecological niches in a spatiotemporal fashion
to maintain the reliability upon then for navigation or
relative localization. We consider locations to be drawn
from or existing in an environmental space. In this paper,
the dependence on geographic coordinates for navigation
is relaxed, enabling the deign of methods for improving
navigation and sampling within a dynamic feature.

To properly navigate and localize by use of the
proposed methodology, we require a real-time state es-
timation routine to run on-board the vehicle. For this
application we have examine the utility of an Unscented
Kalman Filter as described below.

A. Unscented Kalman Filter

The Uncented Kalman Filter fuses the measurements
from the on-board sensors mentioned above to estimate
the position and attitude of the vehicle over time [28].
In this case, we consider a constant velocity model for
the vehicle, as that is how the missions are currently
executed. This can easily be changed for a specific
mission in the future. The UKF is a Bayesian filtering
algorithm which employs a statistical local linearization
procedure to propagate and update the system state.
For nonlinear systems, this approach typically produces
significantly more accurate estimates than the analytic lo-
cal linearization employed by the well-known Extended
Kalman filter (EKF) [29]. Our 10× 1 state vector is

x(t) =
[
(pW (t))

T
(q̄W

B (t))
T

(vB(t))
T
]T

(5)

where pW (t) is the position of the vehicle in the
world (UTM) frame, q̄W

B (t) is the unit quaternion that
defines the attitude of the vehicle’s body relative to the
world frame, and vB(t) is the velocity of the vehicle
in the body frame. This simple kinematic model is
sufficient for this application of long-range planning.
A primary motivation for our choice of the UKF is its
performance with a more sophisticated (and nonlinear)
dynamic model of the vehicle, which we are exploring in
a parallel effort. We remark that the UKF we developed
works for underwater vehicles operating in three spatial
dimensions, and is simplified for our trial here to the
2-D case of operation on the surface of the water.



For our simulation, we assume that the vehicle follows
a nominal, bicycle-type trajectory, and that the vehicle’s
angular rotation rate and linear acceleration are driven by
white, zero-mean Gaussian noise processes represented
by the vectors ηq(t) and ηv(t), with covariance matrices
Qq and Qv , respectively. The system state evolves in
continuous time according to

ṗW(t) = C (q̄W

B (t)) vB(t) (6)

˙̄qW

B (t) =
1

2
Ω (ηq(t)) q̄

W

B (t) (7)

v̇B(t) = ηv(t) (8)

where C (q̄W
B (t)) is the direction cosine matrix corre-

sponding to the unit quaternion q̄W
B (t), and Ω (ηq(t))

is the quaternion kinematic matrix, relating the rate of
change of the orientation quaternion to the body frame
angular velocity [30].

B. Localization with the UKF

We have initially examined the localization of multiple
trajectories over a computed scalar field using a UKF.
Preliminary localization results using the UKF over
our proposed augmented terrain maps have provided
promising results that reduce navigation uncertainty as
compared with dead reckoning and traditional TBN
results. A detailed examination of these results is out
of the scope of this paper, but is an area of active
investigation. Primarily, we are currently investigating
the interplay between the precision and density of the
underlying scalar field versus the effect on navigational
performance; essentially how dense does the initial sur-
vey need to be and how frequent and sparse can updates
be.
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