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Abstract— Visual and inertial sensors, in combination, are
well-suited for many robot navigation and mapping tasks. How-
ever, correct data fusion, and hence overall system performance,
depends on accurate calibration of the 6-DOF transform be-
tween the sensors (one or more camera(s) and an inertial mea-
surement unit). Obtaining this calibration information is typi-
cally difficult and time-consuming. In this paper, we describe
an algorithm, based on the unscented Kalman filter (UKF),
for camera-IMU simultaneous localization, mapping and sensor
relative pose self-calibration. We show that the sensor-to-sensor
transform, the IMU gyroscope and accelerometer biases, the
local gravity vector, and the metric scene structure can all be
recovered from camera and IMU measurements alone. This is
possible without any prior knowledge about the environment
in which the robot is operating. We present results from
experiments with a monocular camera and a low-cost solid-state
IMU, which demonstrate accurate estimation of the calibration
parameters and the local scene structure.

I. INTRODUCTION

The majority of future robots will be mobile, and will need

to navigate reliably in dynamic and unknown environments.

Recent work has shown that visual and inertial sensors, in

combination, can be used to estimate egomotion with high fi-

delity [1]–[3]. However, the six degrees-of-freedom (6-DOF)

transform between the sensors must be accurately known for

measurements to be properly fused in the navigation frame.

Calibration of this transform is typically a complex and time-

consuming process, which must be repeated whenever the

sensors are repositioned or significant mechanical stresses

are applied. Ideally, we would like to build ‘power-up-and-

go’ robotic systems that are able to operate autonomously

for long periods without requiring tedious manual (re-)

calibration.

In this paper, we describe our work on combining visual

and inertial sensing for navigation tasks, with an emphasis

on the ability to self-calibrate the sensor-to-sensor transform

between a camera and an inertial measurement unit (IMU)

in the field. Self-calibration refers to the process of using

imperfect (noisy) measurements from the sensors themselves

to improve our estimates of related system parameters.

Camera-IMU self-calibration is challenging for several

unique reasons. IMU measurements, i.e. the outputs of three

orthogonal angular rate gyroscopes and three orthogonal
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accelerometers, can in theory be integrated to determine the

change in sensor pose over time. In practice, however, all

inertial sensors, and particularly low-cost MEMS1 units, are

subject to drift. The existence of time-varying drift terms

(biases) implies that IMU measurements are correlated in

time. Further, the IMU accelerometers sense the force of

gravity in addition to forces which accelerate the platform.

The magnitude of the gravity vector is typically large enough

to dominate other measured accelerations. If the orientation

of the IMU with respect to gravity is unknown or is mises-

timated, then the integrated sensor pose will diverge rapidly

from the true pose.
Camera image measurements, unlike those from an IMU,

reference the external environment and are therefore largely

immune to drift.2 However, cameras are bearing-only sen-

sors, which require both parallax and a known baseline to

determine the absolute depths of landmarks. This baseline

distance must be provided by another sensor. Our goal is to

demonstrate that it is possible to self-calibrate the camera-

IMU transform, while dealing with IMU drift, the unknown

IMU orientation with respect to gravity, and the lack of

scale information in the camera measurements. As part of

the calibration procedure, we also simultaneously localize

the camera-IMU platform and (if necessary) build a map of

the environment.
Following our earlier work [4], we formulate camera-IMU

relative pose calibration as a filtering problem. Initially, we

consider target-based calibration, where the camera views a

known planar calibration target. We then extend our filtering

algorithm to handle the situation in which the positions of

the landmarks are not a priori known, and so must also be

estimated – a problem we call target-free calibration. As

our main contribution, we show that the 6-DOF camera-

IMU transform, IMU biases, gravity vector, and the metric

scene structure can all be estimated simultaneously, given

sufficiently exciting motion of the sensor platform. To our

knowledge, this is the first time that this result has been pre-

sented. Additionally, we demonstrate that accurate estimates

of the calibration parameters and the metric scene structure

can be obtained using an inexpensive solid-state IMU.
The remainder of the paper is organized as follows.

We discuss related work in Section II, and review several

important results on the observability of camera-IMU self-

calibration in Section III. In Section IV, we describe our

unscented Kalman filter-based estimation algorithm. We then

1MEMS is an acronym for microelectromechanical systems.
2That is, camera measurements are immune to drift as long as the same

static landmarks remain within the camera’s field of view.



give an overview of our calibration experiments in Section

V, and present results from those experiments in Section VI.

Finally, we offer some conclusions and directions for future

work in Section VII.

II. RELATED WORK

Several visual-inertial calibration techniques have been

proposed in the literature. For example, Lang and Pinz

[5] uses a constrained nonlinear optimization algorithm to

solve for the rotation angle between a camera and an IMU.

The algorithm operates by comparing the change in angle

measured by the camera (relative to several external markers)

with the integrated IMU gyro outputs. By rotating the camera

and the IMU together, it is possible to find the angular offset

which best aligns the sensor frames.

Lobo and Dias [6] describes a camera-IMU calibration

procedure in which the relative orientation and relative

translation of the sensors are determined independently. The

procedure requires a pendulum unit and a turntable, making

it impractical for larger robot platforms, and does not account

for time-varying IMU biases. A further drawback is that

separate calibration of rotation and translation decouples

their estimates, and therefore ignores any correlations that

may exist between the parameters.

Closely related to our own work is the camera-IMU

calibration algorithm proposed by Mirzaei and Roumeliotis

[7]. They track corner points on a planar calibration target,

and fuse these image measurements with IMU data in an

iterated extended Kalman filter to estimate the relative pose

of the sensors as well as the IMU biases. A similar approach

for calibrating the relative transform between a spherical

camera and an IMU is discussed in [8]. Both of these

techniques require a known calibration object, however.

Jones, Vedaldi and Soatto present an observability analysis

in [9] which shows that the camera-IMU relative pose,

gravity vector and scene structure can be recovered from

camera and IMU measurements. Their work assumes that the

IMU biases are static over the calibration interval – although

drift in the biases can be significant even over short durations,

particularly for the low-cost inertial sensors considered in

this paper. Our technique, in the spirit of [10], does not

require any additional apparatus in the general case, and

explicitly models uncertainty in the gravity vector and in

the gyroscope and accelerometer biases.

III. OBSERVABILITY OF LOCALIZATION, MAPPING AND

RELATIVE POSE CALIBRATION

Correct calibration of the transform between the camera

and the IMU depends on the observability of the relevant

system states. That is, we must be able recover the state

values from the measured system outputs, the control inputs,

and a finite number of their time derivatives [11]. Observ-

ability is a necessary condition for any filtering algorithm

to converge to an unbiased state estimate [12]. Prior work

on the observability of camera-IMU relative pose calibration

includes [9], [13].

Fig. 1. Relationship between the world {W}, IMU {I}, and camera {C}
reference frames, for target-based calibration. The goal of the calibration
procedure is to determine the transform (pI

C , q̄ I
C) between the camera and

IMU. A previous version of this figure appeared in [4].

In [14], we show that, in the presence of a known calibra-

tion target, the 6-DOF calibration parameters, IMU biases

and the local gravity vector are observable from camera

and IMU measurements only. Further, they are observable

independent of the linear motion of the camera-IMU platform

(as shown in [13] for the biases-only case). Our analysis is

based on a differential geometric characterization of observ-

ability, and relies a matrix rank test originally introduced by

Hermann and Krener [15].

The task of calibrating the relative transform between a

single camera and an IMU is more complicated when a

known calibration object is not available. For the target-

free case, we instead select a set of salient point features

in one or more camera images, and use this set as a

static reference for calibration. The 3-D positions of the

landmarks corresponding to the image features will initially

be unknown, however, and so must also be estimated.

The general problem of estimating both camera motion

and scene structure has been extensively studied in com-

puter vision and in robotics. Chiuso et al. [16] shows that

monocular structure-from-motion (SFM) is observable up to

an unknown similarity transform from image measurements

alone. If we choose the initial camera position as the origin

of our world frame, and fix the initial camera orientation

(relative to three or more noncollinear points on the image

plane), then following [9], [16], scene structure is observable

up to an unknown scale. We prove as our main result in [14]

that, if we ‘lock down’ the initial camera orientation, it is

possible to observe the relative pose of the camera and the

IMU, the gyroscope and accelerometer biases, the gravity

vector and the local scene structure. This result holds as

long as the IMU measures two nonzero angular rates and two

nonzero accelerations (i.e. along at least two axes). Locking

down the initial orientation can introduce a small bias in

the structure measurements – by averaging several camera

observations at the start of the calibration procedure, we have

found that it is possible to make this bias negligible.



IV. CALIBRATION ALGORITHM

We initially describe our system model below, for both

target-based and self-calibration, and then review unscented

filtering and our calibration algorithm. Three separate refer-

ence frames are involved:

1) the camera frame {C}, with its origin at the optical

center of the camera and with the z-axis aligned with

the optical axis of the lens,

2) the IMU frame {I}, with its origin at the center of the

IMU body, in which linear accelerations and angular

rates are measured, and

3) the world frame {W}, which serves as an absolute

reference for both the camera and the IMU.

We treat the world frame as an inertial frame. As a first step,

we must choose an origin for this frame. For the target-based

case, we will select the upper leftmost corner point on the

target as the origin; for self-calibration, we treat the initial

camera position as the origin of the world frame (cf. Section

III).

Because the world frame is defined with respect to either

the calibration target or the initial camera pose, the rela-

tionship between the frame and the local gravity vector can

be arbitrary, i.e. it will depend entirely on how the target

or the camera is oriented. It is possible to manually align

the vertical axis of the calibration target with the gravity

vector, however this alignment will not, in general, be exact.

This is one reason why we estimate the gravity vector during

calibration.

We parameterize orientations in our state vector using unit

quaternions. A unit quaternion is a four-component hyper-

complex number, consisting of both a scalar part q0 and a

vector part q:

q̄ ≡ q0 + q = q0 + q1 ī + q2 j̄ + q3k̄ (1)∥∥ q̄
∥∥ =

√
q2
0 + q2

1 + q2
2 + q2

3 = 1 (2)

where ī, j̄ and k̄ are the quaternion basis vectors.

Unit quaternions have several advantages over other orien-

tation parameterizations, e.g. the map from the unit sphere S3

in R
4 to the rotation group SO(3) is smooth and singularity-

free [17]. However, unit quaternions have four components

but only three degrees of freedom – this constraint requires

special treatment in our estimation algorithm.

A. System Description

We use the UKF to simultaneously estimate the pose of

the IMU in the world frame, the IMU biases, the gravity

vector, and the position and orientation of the camera with

respect to the IMU. The 26× 1 sensor state vector is:

xs(t) ≡
[
(pW

I (t))T (q̄ W
I (t))T (vW (t))T . . .

(bg(t))T (ba(t))T (gW )T (pI
C)T (q̄ I

C)T
]T

(3)

where pW
I is the position of the IMU in the world frame,

q̄ W
I is the orientation of the IMU frame relative to the

world frame, vW is the linear velocity of the IMU in the

world frame, bg and ba are the gyroscope and accelerometer

biases, respectively, and gW is the gravity vector in the world

frame. The remaining entries, pI
C and q̄ I

C , define the position

and orientation of the camera frame relative to the IMU

frame; these values are parameters, i.e. they do not change

over time.

For target-free self-calibration, we also estimate the posi-

tions of a series of static point landmarks in the environment.

The complete state vector for the target-free case is:

x(t) ≡ [
xT

s (t) (pW
l1

)T . . . (pW
ln

)T
]T

(4)

where pW
li

is the 3 × 1 vector that defines the position of

landmark i in the world frame, i = 1, . . . , n, for n ≥ 3. The

complete target-free state vector has size (26 + 3n)× 1.

In our experiments, we have found it sufficient to use

Cartesian coordinates to specify landmark positions. We

initialize each landmark at a nominal depth and with a large

variance along the camera ray axis, at the camera position

where the landmark is first observed. If the landmark depths

vary significantly (by several meters or more), an inverse-

depth parameterization may be more appropriate [18].

1) Process Model: Our filter process model uses the

IMU angular velocities and linear accelerations as substitutes

for control inputs in the system dynamics equations [19].

We model the IMU gyroscope and accelerometer biases

as Gaussian random walk processes driven by the white

noise vectors ngw and naw. Gyroscope and accelerometer

measurements are assumed to be corrupted by the zero-mean

white Gaussian noise, defined by the vectors ng and na,

respectively. The evolution of the system state is described

by:

ṗW

I = vW v̇W = aW ˙̄q W

I =
1
2
Ω(ωI) q̄ W

I (5)

ḃg = ngw ḃa = naw ġW = 03×1 (6)

ṗI

C = 03×1 ˙̄q I

C = 04×1 (7)

where for brevity we do not indicate the dependence on time.

The term Ω(ωI) above is the 4 × 4 quaternion kinematical

matrix which relates the time rate of change of the orientation

quaternion to the IMU angular velocity. The vectors aW and

ωI are the linear acceleration of the IMU in the world frame

and the angular velocity of the IMU in the IMU frame,

respectively. These terms are related to the measured IMU

angular velocity, ωm, and linear acceleration, am, by:

ωm = ωI + bg + ng (8)

am = CT (q̄ W

I ) (aW − gW ) + ba + na (9)

where C(q̄ W
I ) is the direction cosine matrix that describes

the orientation of the IMU frame with respect to the world

frame. We propagate the system state forward in time until

the next camera or IMU update using fourth-order Runge-

Kutta integration of (5) to (7) above.

2) Measurement Model: As the sensors move, the camera

captures images of tracked landmarks in the environment.

Projections of the these landmarks can be used to determine



the position and the orientation of the camera in the world

frame [20].3 We use an ideal projective (pinhole) camera

model, and rectify each image initially to remove lens

distortions. The camera intrinsic and distortion parameters

may either be calibrated separately beforehand, or calibrated

using a subset of the images acquired for the target-based

camera-IMU procedure. Self-calibration of the camera is also

possible, although this is beyond the scope of work presented

here.

Measurement zi is the projection of landmark i, at position

pC
li

=
[
xi yi zi

]T
in the camera frame, onto the image

plane:

pC

li
=

⎡
⎢⎣

xi

yi

zi

⎤
⎥⎦ = CT(q̄ I

C)CT(q̄ W

I )
(
pW

li
− pW

I

)−CT(q̄ I

C)pI

C

(10)

zi =

[
ui

vi

]
=

[
x′

i

y′
i

]
+ ηi,

⎡
⎢⎣

x′
i

y′
i

1

⎤
⎥⎦ = K

⎡
⎢⎣

xi/zi

yi/zi

1

⎤
⎥⎦ (11)

where
[
ui vi

]T
is the vector of observed image coordinates,

K is the 3× 3 camera intrinsic calibration matrix [21], and

ηi is a Gaussian measurement noise vector with covariance

matrix Ri = σ2
i I2×2.

When several landmarks are visible in one image, we stack

the individual measurements to form a single measurement

vector z =
[
zT
1 . . . zT

n

]T
and the associated block-

diagonal covariance matrix R = diag
(
R1 . . . Rn

)
. This

vector can then be processed by our filtering algorithm in

one step.

B. Unscented Filtering

The UKF is a Bayesian filtering algorithm which prop-

agates and updates the system state using a set of

deterministically-selected sample points called sigma points.

These points, which lie on the covariance contours in state

space, capture the mean and covariance of the state dis-

tribution. The filter applies the unscented transform to the

sigma points, propagating each point through the (nonlinear)

process and measurement models, and then computes the

weighted averages of the transformed points to determine the

posterior state mean and state covariance. This is a form of

statistical local linearization, which produces more accurate

estimates than the analytic local linearization employed by

the extended Kalman filter (EKF).

We use a continuous-discrete formulation of the UKF,

in which the sigma points are propagated forward by in-

tegration, while measurement updates occur at discrete time

steps. Our filter implementation augments the state vector

and state covariance matrix with a process noise component,

as described in [22]:

xa(t) ≡
[
x(t)
n(t)

]
(12)

3For target-free calibration, the position is determined up to scale only.

where xa(t) is the augmented state vector of size N at time

t, and n(t) =
[
ngw naw ng na

]T
is the 12 × 1 process

noise vector. We employ the scaled form of the unscented

transform [23], which requires a scaling term:

λ = α2(N + β)−N (13)

The α parameter controls the spread of the sigma points

about the state mean and is usually set to a small positive

value (10−3 in our implementation). The β parameter is

used to incorporate corrections to higher-order terms in

the Taylor series expansion of the state distribution; setting

β = 2 minimizes the fourth-order error for jointly Gaussian

distributions.

At time t − τ , immediately after the last measurement

update, the augmented state mean x̂+
a (t− τ) and augmented

state covariance matrix P+
a (t− τ) are:

x̂+
a (t−τ) ≡

[
x̂+(t− τ)

012×1

]
, P+

a (t−τ) ≡
[
P+(t− τ) 0

0 Qc

]
(14)

where τ is the update time interval and Qc is the covariance

matrix for the noise vector n(t). The augmented state vector

x̂+
a (t − τ) is used to generate the set of sigma points

according to:

χ0
a(t− τ) = x̂+

a (t− τ) (15)

χk
a(t− τ) = x̂+

a (t− τ) + Sj (t− τ), (16)

j=k=1,...,N

χk
a(t− τ) = x̂+

a (t− τ)− Sj (t− τ), (17)

j=1,...,N, k=N+1,...,2N

S(t− τ) =
√

(λ + N) P+
a (t− τ) (18)

where Sj denotes the jth column of the matrix S. The matrix

square root of P+
a (t− τ) can be found by Cholesky decom-

position [24]. The associated sigma point weight values are:

W0
m = λ/(λ + N) (19)

W0
c = λ/(λ + N) + (1− α2 + β) (20)

Wj
m = Wj

c =
1

2 (λ + N)
, j = 1, . . . , 2N (21)

Individual sigma points are propagated through the aug-

mented nonlinear process model function fa, which incor-

porates process noise in the propagation equations, and the

weights above are used to calculate the a priori state estimate

and covariance matrix at time t:

χi a(t) = fa
(

χi a(t− τ)
)
, i = 0, . . . , 2N (22)

x̂−(t) =
2N∑
i=0

Wi m χi (t) (23)

P−(t) =
2N∑
i=0

Wi c

(
χi (t)− x̂−(t)

) (
χi (t)− x̂−(t)

)T
(24)

When a measurement arrives, we determine the predicted

measurement vector by propagating each sigma point



through the nonlinear measurement model function h:

γi (t) = h
(

χi (t)
)
, i = 0, . . . , 2N (25)

ẑ(t) =
2N∑
i=0

Wi m γi (t) (26)

We then perform a state update by computing the Kalman

gain matrix K(t) and the a posteriori state vector and state

covariance matrix:

Px̂ẑ(t) =
2N∑
i=0

Wi c

(
χi (t)− x̂−(t)

) (
γi (t)− ẑ(t)

)T
(27)

Pẑẑ(t) =
2N∑
i=0

Wi c

(
γi (t)− ẑ(t)

) (
γi (t)− ẑ(t)

)T
(28)

K(t) = Px̂ẑ(t) (Pẑẑ(t) + R(t))−1
(29)

x̂+(t) = x̂−(t) + K(t) (z(t)− ẑ(t)) (30)

P+(t) = P−(t)−K(t)Pẑẑ(t)KT (t) (31)

where Px̂ẑ(t) and Pẑẑ(t) are the state-measurement cross-

covariance matrix and the predicted measurement covariance

matrix, respectively, while R(t) is the measurement covari-

ance matrix for the current observation(s).

C. The Unscented Quaternion Estimator

The UKF computes the predicted state vector as the

weighted barycenteric mean of the sigma points. For unit

quaternions, however, the barycenter of the transformed

sigma points will often not represent the correct mean. In

particular, the weighted average of several unit quaternions

may not be a unit quaternion.

There are several possible ways to enforce the quaternion

unit norm constraint within the UKF, for example by in-

corporating pseudo-observations or by projecting the uncon-

strained time and measurement updates onto the quaternion

constraint surface [25]. We follow the method described in

[26] and reparameterize the state vector to incorporate a

multiplicative, three-parameter orientation error state vector

in place of the unit quaternions q̄ W
I and q̄ I

C . This approach,

called the USQUE (UnScented QUaternion Estimator) filter

in [26], defines a multiplicative local error quaternion:

δq̄ ≡ [
δq0 δqT

]T
(32)

and the following three-component vector of modified Ro-

drigues parameters (MRPs), derived from the error quater-

nion:

δe =
δq

1 + δq0
(33)

The MRP vector is an unconstrained three-parameter rotation

representation, which is singular at 2π, and can be expressed

in axis-angle form as:

δe ≡ ū tan(θ/4) (34)

where ū defines the rotation axis, and θ is the rotation angle.

The inverse transformation, from the MRP vector to the error

quaternion δq̄, is given by:

δq0 =
1− ∥∥ δe

∥∥2

1 +
∥∥ δe

∥∥2 (35)

δq = (1 + δq0) δe (36)

From the full sensor state vector (3), we define the modified

24× 1 sensor error state vector xse(t) as:

xse(t) =
[
(pW

I (t))T (δeW
I (t))T (vW (t))T . . .

(bg(t))T (ba(t))T (gW )T (pI
C)T (δe I

C)T
]T

(37)

where δeW
I and δe I

C are the MRP error state vectors corre-

sponding to the quaternions q̄ W
I and q̄ I

C .

Throughout the calibration procedure, the filter maintains

an estimate of the full 26 × 1 sensor state vector and the

24 × 24 error state covariance matrix. For the orientation

quaternions q̄ W
I and q̄ I

C , we store the covariance matrices

for the MRP error state representations.

At the start of each propagation step, we compute the

sigma points for the error state according to (15)–(17), setting

the mean error state MRP vectors to:

δ êW
I

0 (t− τ) = 03×1, δ ê I
C

0 (t− τ) = 03×1 (38)

where we indicate the component of the state vector that

belongs to a specific sigma point by prefixing the vector with

a superscripted index (zero above). We follow this convention

throughout this section.

To propagate the IMU orientation quaternion ˆ̄q W
I forward

in time, we compute the local error quaternion jδ ˆ̄q W
I (t− τ)

from the MRP vector associated with sigma point j using

(35)–(36), and then the full orientation quaternion from the

error quaternion:

j ˆ̄q W

I (t− τ) = jδ ˆ̄q W

I (t− τ)⊗ ˆ̄qW+

I (t− τ), j = 1, . . . , 2N
(39)

where the ⊗ operator denotes quaternion multiplication. The

other components of the sigma points are determined by

addition or subtraction directly. Each sigma point, including

the corresponding full IMU orientation quaternion, is then

propagated through the augmented process model function

fa from time t− τ to time t.
We determine the orientation error quaternions at time t

by reversing the procedure above, using the propagated mean

quaternion:

jδ ˆ̄q W

I (t) = j ˆ̄q W

I (t)⊗ (
0 ˆ̄q W

I (t)
)−1

j = 1, . . . , 2N (40)

and finally compute the orientation MRP error vector using

(33). Note that this is required during the propagation step

for the IMU orientation quaternion only, as the camera-IMU

orientation quaternion does not change over time. We can

then compute the updated a priori error state vector and

error state covariance matrix using (23) and (24).

We store the orientation quaternions from the propagation

step; when a measurement arrives, we compute the predicted



measurement vector for each sigma point using the nonlin-

ear measurement function h. The error quaternion for the

camera-IMU orientation is determined according to:

jδ ˆ̄q I

C(t) = j ˆ̄q I

C(t)⊗ (
0 ˆ̄q I

C(t)
)−1

j = 1, . . . , 2N (41)

and the MRP error state vectors are found using (33). We

then compute (27)–(29) and the updated a posteriori error

state vector and error state covariance matrix. As a final

step, we use the updated mean MRP error state vectors to

compute the mean error quaternions, and the full state vector

orientation quaternions.

D. Filter Initialization

At the start of the calibration procedure, we compute an

initial estimate of the sensor state vector. For target-based

calibration, we first generate initial estimates of the camera

position p̂W
C and orientation ˆ̄q W

C in the world frame. Given

the known positions of the corner points on the calibration

target and their image projections, we use Horn’s method

[27] to compute the camera orientation quaternion in closed

form (after coarse initial triangulation). This is followed

by an iterative nonlinear least squares refinement of the

translation and orientation estimates; the refinement step

provides the 3 × 3 MRP error covariance matrix for the

camera orientation in the world frame.

An initial estimate of the camera pose relative to the IMU

is also required. We use hand measurements of the relative

pose for the experiments described in this paper – however

this information may in many cases be available from CAD

drawings or other sources. Using the estimate of the camera

pose in the world frame and the estimate of the relative

pose of the camera with respect to the IMU, we can then

calculate an initial estimate of the IMU pose in the world

frame, according to:

p̂W

I = p̂W

C −C(ˆ̄q W

C )CT (ˆ̄q I

C) p̂I

C (42)

ˆ̄q W

I = ˆ̄qW

C ⊗ (
ˆ̄q I

C

)−1
(43)

For target-free calibration, the initialization procedure is the

same as that above, except that the initial camera position is

set as the origin of the world frame, and the initial camera

orientation is chosen arbitrarily. The camera pose has zero

initial uncertainty in this case.

As part of the target-free procedure, we estimate the map

state (landmark positions in the world frame) as well as

the sensor state. We typically select approximately 40 to 60

landmarks as static references for calibration. The positions

of the n landmarks in the world frame are initially estimated

as:

pW

li
= d K−1

[
ui vi 1

]T
, i = 1, . . . , n (44)

assuming that the initial direction cosine matrix that defines

the camera orientation is the identity matrix. The value d
is a nominal landmark depth, while K−1 is the inverse

of the camera intrinsic calibration matrix and
[
ui vi

]T
is

the vector of observed image coordinates for landmark i.
The covariance matrix for each landmark is computed by

propagating the image plane uncertainty and a large initial

(a)

(b)

Fig. 2. (a) Sensor beam, showing Flea camera (right) and 3DM-G IMU
(center). The beam is 40 cm long. (b) Our planar camera calibration target.
Each target square is 104 mm on a side. There are 48 interior corner points,
which we use as landmarks. The small red circles in the figure identify
the four points whose directions we ‘lock down’ for the self-calibration
experiments described in Section V-B.

variance along the camera ray into 3-D, yielding a covariance

ellipsoid in the world frame.

As a last step, we select three or four highly salient and

widely dispersed landmarks as anchors to fix the orientation

of the world frame. The covariance ellipsoids for these points

are initialized using very small image plane uncertainties.

This effectively locks down the initial camera pose and

ensures that the full system state is observable.

E. Feature Detection and Matching

We use different feature detection and matching techniques

for target-based and target-free calibration. For the target-

based case, we first locate candidate points on the target

using a fast template matching algorithm. This is followed

by a homography-based check to ensure that all points lie

on a planar surface. Once we have coarse estimates of the

locations of the corner points, we refine those estimates to

subpixel accuracy using a saddle point detector [28].

Target-free calibration is normally performed in a previ-

ously unseen and unknown environment. For this case, we

select a set well-localized point features as landmarks, using

a feature selection algorithm such as SIFT [29]. Feature

matching between camera frames is performed by comparing

the descriptors for all points that lie within a bounded image

region. The size of the search region is determined based on



TABLE I

RESULTS FOR TARGET-BASED CALIBRATION AND TARGET-FREE SELF-CALIBRATION, USING DATA FROM THE SAME EXPERIMENTAL TRIAL. THE

INITIAL HAND-MEASURED (HM) ESTIMATE OF THE CAMERA-IMU TRANSFORM (x, y, z TRANSLATION AND ROLL, PITCH, YAW ORIENTATION) AND

THE FINAL TARGET-BASED (TB) AND TARGET-FREE (TF) ESTIMATES ARE LISTED, ALONG WITH THEIR RESPECTIVE 3σ ERROR BOUNDS.

px ± 3σ (cm) py ± 3σ (cm) pz ± 3σ (cm) Roll ± 3σ (◦) Pitch ± 3σ (◦) Yaw ± 3σ (◦)

HM 0.00 ± 12.00 -15.00 ± 15.00 0.00 ± 6.00 90.00 ± 15.00 0.00 ± 15.00 90.00 ± 15.00

TB 6.32 ± 0.54 -14.52 ± 0.43 -1.55 ± 0.44 90.59 ± 0.08 0.80 ± 0.09 89.35 ± 0.08

TF 6.55 ± 0.54 -14.55 ± 0.43 -1.83 ± 0.44 90.56 ± 0.08 0.80 ± 0.09 89.29 ± 0.08

the integrated IMU measurements over the interval between

the camera image updates.

V. EXPERIMENTS

We performed a series of experiments to quantify the accu-

racy and performance of the target-based and the target-free

calibration algorithms. Although we have tested target-free

self-calibration in a variety of unstructured environments,

in this paper we restrict ourselves to a comparison of the

two approaches using the same dataset (images a planar

calibration target). The calibration target provides known

ground truth against which we can evaluate the quality of

the structure recovered by the target-free algorithm.

A. Platform

We use a black and white Flea FireWire camera from Point

Grey Research (640×480 pixel resolution), mated to a 4 mm

Navitar lens (58◦ horizontal FOV, 45◦ vertical FOV). Images

are captured at a rate of 15 Hz. Our IMU is a MEMS-based

3DM-G unit, manufactured by Microstrain, which provides

three-axis angular rate and linear acceleration measurements

at approximately 60 Hz. Both sensors are securely bolted to

a rigid 40 cm long 8020 aluminum beam, as shown in Figure

2 (a). Our planar calibration target, shown in Figure 2 (b), is

100 cm × 80 cm in size and has 48 interior corner points.
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Fig. 3. Path of IMU in the world frame over the first 40 seconds of the
calibration experiment. The green circle indicates the starting position.

B. Experimental Procedure

At the start of each experiment, we initialized the filter

biases by holding the sensor beam still for approximately

10 seconds. After this settling time, we moved the beam

manually through a series of rotation and translation maneu-

vers, at distances between approximately 1.0 m and 2.5 m

from the calibration target. We attempted to keep the target

approximately within the camera’s field of view throughout

the duration of the trial. Image processing and filtering were

performed offline.

The camera-IMU transform parameters were initialized

using hand measurements of the relative pose of the sensors.

We used a subset of 25 images acquired during the camera-

IMU procedure to calibrate the camera intrinsic and distor-

tion parameters. Each image measurement was assumed to

be corrupted by independent white Gaussian noise with a

standard deviation of 2.0 pixels along the u and v image

axes.

Self-calibration requires us to first lock down the orienta-

tion of the world reference frame by fixing the directions to

three or more points on the image plane. For our experiments,

we chose to fix the directions to the upper and lower left

and right corner points on the target (as shown in Figure

2(b)). To do so, we computed the covariance ellipsoids

for the corresponding landmarks using very small image

plane uncertainties (1 × 10−4 pixels), after averaging the

image coordinates over 450 frames (30 seconds) to reduce

noise. This averaging was performed using images acquired

while the sensor beam was stationary, before the start of an

experimental trial. We chose an initial depth of 3.0 m for

each of the 48 points on the target, along the corresponding

camera ray, with a standard deviation of 0.75 m.

It is important to emphasize that the self-calibration algo-

rithm does not require a calibration target. We use the target

here for both cases only to evaluate their relative accuracy,

with ground truth available.

VI. RESULTS AND DISCUSSION

We compared the target-based and the target-free self-

calibration algorithms using a dataset consisting of 12,046

IMU measurements (6-DOF angular rates and linear ac-

celerations) and 2,966 camera images, acquired over 200

seconds. The calibration target was not completely visible in

20 of the image frames – we simply discarded these frames,

leaving 2,946 images for use by the estimation algorithm

(in which all 48 target points were successfully identified).
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Fig. 4. (a) Evolution of the IMU-to-camera translation estimate over the calibration time interval (along the x, y and z axes of the IMU frame, from top
to bottom) for the target-based calibration procedure. (b) Evolution of the IMU-to-camera orientation estimate (for the roll, pitch and yaw Euler angles
that define the orientation of the camera frame relative to the IMU frame, from top to bottom) for the target-based procedure.
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Fig. 5. (a) Evolution of the IMU-to-camera translation estimate over the calibration time interval (along the x, y and z axes of the IMU frame, from top
to bottom) for the target-free self-calibration procedure. (b) Evolution of the IMU-to-camera orientation estimate (for the roll, pitch and yaw Euler angles
that define the orientation of the camera frame relative to the IMU frame, from top to bottom) for the target-free self-calibration procedure.

The maximum rotation rate of the IMU was 188◦/s, and the

maximum linear acceleration (after accounting for gravity)

was 6.14 m/s2. Figure 3 shows the estimated path of the

IMU over the first 40 seconds of the experiment.

Table I lists the initial hand-measured (HM) camera-IMU

relative pose estimate and the final target-based (TB) and

target-free (TF) relative pose estimates. The corresponding

plots for the time-evolution of the system state are shown in

Figures 4 and 5, respectively. Note that the results are almost

identical, and that the target-based relative pose values all lie

well within the 3σ bounds of the self-calibrated relative pose

values.

As ground truth measurements of the relative pose param-

eters were not available, we instead evaluated the residual

pixel reprojection errors for the hand-measured, target-based

and self-calibrated relative pose estimates. We determined

these residuals by running the UKF using the respective

pose parameters (listed in Table I), without estimating the

parameters in the filter. For our hand-measured estimate,

the RMS residual error was 4.11 pixels; for the target-based

estimate, the RMS residual was 2.23 pixels; for the target-

free estimate, the RMS residual was 2.26 pixels. Both the

target-based and target-free RMS residuals are much lower

than the hand-measured value, indicating that calibration

significantly improves motion estimates. Also, the difference

in the magnitude of the residuals increases as the camera

frame rate is reduced (below 15 Hz).

To evaluate our ability to accurately estimate the landmark

positions during self-calibration (i.e. to implement SLAM),

we performed a nonlinear least-squares fit of the final land-

mark position estimates to the ground truth values (based

on our manufacturing specifications for the planar target).

The RMS error between the true and estimated positions

was only 5.7 mm over all 48 target points, and the majority



of this error was along the depth direction. This result

clearly demonstrates that it is possible to accurately calibrate

the camera-IMU transform and to simultaneously determine

scene structure in unknown environments and without any

additional apparatus. It is perhaps more impressive that this

level of accuracy can be obtained with a sensor such as the

3DM-G, which uses automotive-grade MEMS accelerome-

ters and can be purchased for less than $1000 US.

VII. CONCLUSIONS AND ONGOING WORK

In this paper, we presented an online localization, mapping

and relative pose calibration algorithm for visual and inertial

sensors. Our results show that it is possible to accurately cal-

ibrate the sensor-to-sensor transform without using a known

calibration target or other calibration object. This work is a

step towards building power-up-and-go robotic systems that

are able to self-calibrate in the field, during normal operation.

We are currently working to deploy our visual-inertial cali-

bration system on several platforms, including an unmanned

aerial vehicle and a humanoid robot. Additionally, we are

exploring the possibility of using a similar framework to

calibrate the transform between different types of sensors,

including laser range finders and GPS units.
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