
Coordinated Three-Dimensional Robotic Self-Assembly

Jonathan Kelly
Department of Computer Science
University of Southern California

Los Angeles, California, USA 90089-0781
jonathsk@usc.edu

Hong Zhang
Department of Computer Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E1

zhang@cs.ualberta.ca

Abstract—Nature has demonstrated that geometrically
interesting and functionally useful structures can be built in an
entirely distributed fashion. We present a biologically-inspired
model and several algorithms for three-dimensional self-
assembly, suitable for implementation by very simple reactive
robots. The robots, which we call assembly components,
have limited local sensing capabilities and operate without
centralized control. We consider the problem of maintaining
coordination of the assembly process over time, and introduce
the concept of an assembly ordering to describe constraints on
the sequence in which components may attach to a growing
structure. We prove the sufficient properties of such an
ordering to guarantee production of a desired end result. The
set of ordering constraints can be expressed as a directed
acyclic graph; we develop a graph algorithm that is able to
generate ordering constraints for a wide variety of structures.
We then give a procedure for encoding the graph in a set of
local assembly rules. Finally, we show that our previous results
for the optimization of rule sets for two-dimensional structures
can be readily extended to three dimensions.

Index Terms—Self-assembly, multi-robot coordination, graph
theory, optimization, randomized algorithms.

I. INTRODUCTION

In this paper, we describe a model and several asso-
ciated algorithms for three-dimensional self-assembly. We
specifically consider the problem of enabling the coordinated
assembly of complex structures using very simple agents.
This extends our previous work [1] to three dimensions and
to a larger class of structures. Self-assembly, in this context,
is defined as a process in which the agents involved become
part of the final structure being built.

If we wish to employ self-assembly for our own purposes,
we must immediately deal with two fundamental issues:
maintaining coordination of the assembly process, and en-
suring that a desired structure is produced reliably. Some
form of coordination is required to prevent the agents from
producing a disorganized or random result. The reliability of
the assembly process, in turn, depends on the agents’ ability
to correctly identify some set of environmental features –
for agents with limited sensing capabilities, identification
becomes more difficult as the size of this set increases.

In many large-scale systems, the coordination problem is
particularly challenging because agents are able to interact

with each other only locally. Long-range sensing and com-
munication are either prohibitively costly or impossible. A
challenge, then, is to solve the local-to-global problem: given
a system of many agents interacting locally, how does one
program the system to produce a specific global result?

To explore these issues from an algorithmic perspective,
we introduce a model in which unit-cube assembly compo-
nents (our agents) move on a discrete lattice and use simple
rules to self-assemble into three-dimensional structures. First,
we formally define a set of sufficient local spatiotemporal
ordering constraints that enable assembly to progress in a
coordinated manner. Production of a desired structure is
guaranteed as long as these constraints are respected. We
develop an algorithm for expressing the constraints as a
directed acyclic graph, and show that the algorithm can
correctly describe constraints for complex structures. We
then give a procedure for encoding the graph in a set of
local assembly rules. By doing so, we solve an instance
of the local-to-global problem – the rules produce implicit
coordination among agents and require no direct agent-to-
agent communication. Finally, we extend our randomized
optimization algorithm, originally presented in [1], to three
dimensions. The algorithm attempts to minimize the number
of unique environmental features that appear in the assembly
rules, by iteratively refining a worst-case solution.

The remainder of the paper is organized as follows. We
review prior work in Section II. Our assembly model is in-
troduced in Section III, and we examine related coordination
issues in Section IV. We then briefly describe our randomized
optimization algorithm in Section V. Experimental results
are presented in Section VI. We offer some conclusions and
directions for future research in Section VII.

II. PRIOR AND PROXIMAL WORK

Relevant prior and proximal work falls broadly into two
categories: self-assembly and collective assembly. Although
our focus here is on self-assembly, we discuss several impor-
tant results for collective systems below as well.

Self-assembly can be viewed as a form of computation,
where the input to a self-assembly ‘program’ is a set of
individual atomic (irreducible) components or parts, and the
output is a final, aggregate structure. In [2], for example,

Proceedings of the 2008 IEEE
International Conference on Robotics and Biomimetics
Bangkok, Thailand, February 21 - 26, 2009

978-1-4244-2679-9/08/$25.00 ©2008 IEEE 172

Adleman presents a model for the one-dimensional self-
assembly of linear chains of square planar tiles. The edges
of each tile are assigned integer glue values; tiles will bind
along abutting edges if their glues are compatible. Adleman
provides a metric for the time complexity of chain formation
based on counting the number of bindings between tiles.

Rothemund and Winfree [3] describes a two-dimensional
Tile Assembly Model, in which unit-square tiles move ran-
domly on the plane and join together to form larger structures.
A tile type is a unique assignment of glue values (cf. [2])
to the edges of a tile. A tile will bind with one or more
neighbors if the total strength (sum) of their pairwise edge
interactions, defined by a glue strength function, is larger than
a fixed temperature parameter. Work in [4] gives an assembly
algorithm for n × n squares that is optimal in terms of the
required number of tile types and the asymptotic assembly
time. The problem of determining whether a certain number
of tile types is the minimum needed to uniquely assemble an
arbitrary planar structure is shown to be NP-complete in [5].

Klavins et al. [6] presents a graph-based model for robotic
self-assembly, where graph vertices represent parts and edges
between vertices indicate that the corresponding parts are at-
tached. Assembly rules are specified by a grammar consisting
of a set of graph pairs: if a conformation of parts matching the
first graph in a pair exists, the conformation can be replaced
with a new conformation defined by the second graph. Ghrist
and Lipsky [7] extends graph grammars to tile assembly
systems, and gives examples of grammars that generate only
planar outputs, but does not address the problem of designing
grammars for arbitrary planar structures.

Closely related to our own work is the Intelligent Self
Assembly (ISA) model proposed by Jones and Matarić [8],
in which autonomous unit-square Assembly Agents (AAs)
self-assemble into planar structures under local, rule-based
control. Rules are generated offline by a Transition Rule
Set (TRS) compiler, which takes the goal structure as an
input and produces a set of assembly rules as an output.
The compiler is able to generate assembly rules for a limited
subset of planar structures only, however.

Arbuckle and Requicha [9] proposes a communicative
model for self-assembly, involving agents that are able to
send messages to connected neighbours. Communication
enables a global ordering to be imposed on the assembly
process, and facilitates adaptation to unknown obstacles in
the environment. The disadvantage of communication is
that it requires significant resources (e.g. power) from each
assembly agent. For this reason, we specifically develop a
system in which explicit communication is not required.

A relevant example of collective assembly is the model of
wasp nest construction proposed by Bonabeau et al. [10].
Here, reactive agents move randomly and asynchronously
on a three-dimensional lattice, depositing elementary bricks
when they sense certain stimulating configurations of bricks

(a) (b)

Fig. 1: (a) Structure A, composed of 17 assembly compo-
nents. (b) Cutaway view, showing the seed component in
gray. The seed is always positioned in cell (0, 0, 0).

in adjacent cells. There is no centralized control or direct
communication in the system, and agents have access only
to local information about the portion of a structure in their
immediate vicinity. The rule space in the model is extremely
large – however, there are relatively few subsets of rules
which generate organized architectures [11]. Work in [12]
explores the rule space using a genetic algorithm (GA),
where the fitness function is based on subjective human
evaluation of the ‘structuredness’ of a series of example
architectures. Although the structures produced by the GA
are visibly organized, [12] does not consider the problem
of generating rules that assemble specific structures in an
exact and repeatable way. In contrast, we are able to produce
deterministic rules that lead to a pre-specified end result.

Werfel et al. suggest an approach called extended stig-
mergy, using a bipartite system of blocks and robots, for
two-dimensional [13] and three-dimensional [14] collective
assembly. Square or cubic structural blocks communicate
state information to their neighbours and to nearby mobile
robots. Using this information, the robots are able to assemble
a range of two- and three dimensional structures, specified by
either a complete design or by a set of more general spatial
constraints. This bipartite approach is more complicated than
our homogeneous model, and has the same drawbacks as
those outlined above for [9].

III. A MODEL FOR THREE-DIMENSIONAL
SELF-ASSEMBLY

Our assembly model uses a simple discretization of time
and space, in which a number of assembly components
independently traverse a three-dimensional Cartesian lattice.
A position in the lattice, specified by a unique coordinate
triple (x, y, z), is called a cell. Each cell has six adjacent
neighbors to the north, east, south and west, and below and
above. Our goal is to produce a specific target T , or a set
of cells that, when occupied, form a desired shape. The set
T always includes the origin cell, (0, 0, 0). A structure is

173

complete when it contains exactly the same set of occupied
cells as the target.

The assembly process begins with a group of n ≥ 1 free
components at a set F of random lattice positions, and a
single seed component, which is fixed at the origin cell.
Growth of a structure occurs outwards from the seed. We
assume that the lattice is of sufficient size to accommodate
the target that we wish to build, with an additional border of
cells (at least one unit wide) around the entire perimeter.

At each discrete time step, every free component performs
a random walk, moving to an adjacent empty cell if possible.
As a component moves, it compares the occupancy pattern
in the six adjacent cells with entries in an internal lookup
table of assembly rules. An assembly rule is defined by a
local binding configuration of assembly components in the
adjacent cells, and an identifier (feature or state) associated
with each component; we use the term label for such an
identifier. For our purposes, labels will be values from the
set N+ of positive integers. In a physical system, a label
might be any characteristic which is readily discernible at the
appropriate scale. At least one cell in a binding configuration
must be occupied, and up to five cells may be occupied.

When a binding configuration is identified, the component
applies the corresponding rule by attaching (binding) itself
to the adjacent components at its current lattice position.
Binding is irreversible – assembly actions are never undone.
The component is then bound to the structure, and the number
of free components is reduced by one. Immediately after
binding, the component performs a label update, transitioning
from the null label (‘0’ by our convention) to the resultant
label defined by the activated rule. The rules are identical
for all components, making each component redundant and
interchangeable.

An assembly component is a simple, reactive robot with
minimal sensing capabilities: it is able to determine its ori-
entation within the lattice, and to identify the labels on other
components in adjacent, occupied cells. The components
have no knowledge of their own lattice positions, and no
capacity to acquire or compute this information. Additionally,
components have no memory of past actions or observations
and do not communicate directly with one another.

Formally, we define a structure as a set S of occupied
lattice cells, identified by their coordinates. A label set is
a set L ⊂ N+, with |L| finite. We model the assembly of
connected structures only, in which there is a path of adjacent
cells between every two cells in S.

A binding configuration is an ordered six-tuple
(ln, le, ls, lw, ld, lu) of values from the set N+ ∪ {−},
where the values represent labels on components in the six
adjacent cells to the north, east, south, west and below and
above. The symbol ‘−’ is used to designate cells in the
configuration that may either be empty or be occupied by a
free component.

The assembly process yields a labeled structure (S,L, λ),
where S is a (connected) structure, L is a label set, and λ is
a surjection λ : S → L. We will identify a labeled structure
by a set of (coordinates, label) pairs, or, for brevity, by a
symbol S̄ with an over-bar. The seed component is always
given the initial label ‘1’.

An assembly rule is an ordered seven-tuple r =
(ln, le, ls, lw, ld, lu, γ), where the first six values define the
binding configuration and γ ∈ L is the resultant label. Rule
r may be applied by a free component in cell (i, j, k) if and
only if the binding configuration for r exactly matches the
current lattice configuration at (i, j, k). When r is applied,
we update the set F of positions of free components as
F ← F \ {(i, j, k)} and the labeled structure S̄ as S̄ ←
S̄ ∪ {((i, j, k), γ)}.

IV. COORDINATION OF THE ASSEMBLY PROCESS

Assembly cannot occur in an entirely arbitrary way –
components must already be positioned in certain lattice cells
before other components may bind to the growing structure.
Further, since binding is irreversible, it is necessary to ensure
that groups of components do not prematurely form barriers
which prevent free components from moving to fill vacant
target cells.

Below, we introduce the concept of an assembly ordering
to describe these constraints. We begin by noting that each
lattice cell is always in one of three mutually exclusive states:
accessible, inaccessible, or occupied by a bound component.
The empty cell (i, j, k) is accessible if and only if, with
all free components removed from the lattice and starting
at an empty cell on the perimeter, there is a connected set
of pairwise-adjacent empty cells that includes (i, j, k). Oth-
erwise, the empty cell is inaccessible, and free components
will be unable to reach the cell.

A. Ordering Constraints

An assembly ordering for a target T is a set of temporal
ordering constraints over the cells in T . Let ≺ be the
binary predecessor relation, such that for any two cells
(i, j, k), (p, q, r) ∈ T , (i, j, k) ≺ (p, q, r) if cell (i, j, k) must
be occupied by a bound component before cell (p, q, r) may
be occupied. We call (i, j, k) a predecessor cell (or simply
predecessor) of (p, q, r), and (p, q, r) a successor cell (or
simply successor) of (i, j, k). The seed cell is a predecessor
of every other cell in T . Together, the set T and relation ≺
define an assembly ordering (T ,≺).

The ordering (T ,≺) for target T is valid if and only if, for
any assembly sequence that respects (T ,≺) and at any stage
of the assembly process, every cell in T is either accessible
or occupied by a bound component – that is, if assembly is
always able to proceed to completion. We say that an ordering
is violated when an assembly rule allows a component to bind
to a structure before one of the predecessor cells is occupied.

174

Algorithm 1 Breadth-First Assembly Graph for Target
Input: Target T
Output: Breadth-first directed assembly graph G′

1: V ← set of vertices, one vertex for each cell in T
2: E ← set of undirected edges, one edge for every pair of

adjacent cells in T
3: G ← (V,E) // undirected adjacency graph
4: E′ ← ∅
5: open ← {v(0,0,0)} // FIFO queue
6: closed ← ∅
7: while open is not empty do
8: v(i,j,k) ← dequeued vertex from front of open
9: closed ← closed ∪ {v(i,j,k)}

10: for each vertex v(p,q,r) adjacent to v(i,j,k) in G do
11: if v(p,q,r) /∈ closed then
12: if v(p,q,r) /∈ open then
13: add v(p,q,r) to end of open
14: end if
15: else
16: E′ ← E′ ∪ {(v(p,q,r), v(i,j,k))} // add edge
17: end if
18: end for
19: end while
20: return G′ = (V,E′)

To define a valid ordering, we will divide the set of cells
in the target into two disjoint subsets: exterior boundary
cells and interior cells. Consider a lattice containing a
complete target T , with all other cells empty. Choose a cell
(s, t, u) outside of the bounding box that encloses T . A cell
(i, j, k) ∈ T is an exterior boundary cell of T if, with (i, j, k)
empty and all other cells in T occupied, (i, j, k) is accessible
from (s, t, u). Likewise, let T be a target, and B ⊆ T be
the exterior boundary set for T . An interior cell is a cell
(p, q, r) ∈ T \ B.

With these definitions in hand, we now state an important
theorem about valid assembly orderings. An abbreviated
proof of the theorem is given in the appendix.

Theorem 1 An assembly ordering (T ,≺) is valid if and
only if, for each cell in T except the seed, there is at least
one adjacent predecessor cell, and for each interior cell there
is at least one adjacent successor cell.

B. Assembly Graphs

An assembly ordering can be expressed as a directed
acyclic graph, consisting of a set of vertices, corresponding
to the cells in the target, and a set of directed edges,
corresponding to pairwise spatiotemporal ordering constraints
between the cells. We call such a graph an assembly graph;
this formalism will allow us to use a breadth-first graph
traversal algorithm to produce valid assembly orderings for

Algorithm 2 Rule Set from Labeled Structure
Input: Labeled structure S̄ and assembly ordering (T ,≺)
Output: Rule set R

1: R ← ∅
2: for each cell (i, j, k) ∈ T do
3: for cell (p, q, r) adjacent to (i, j, k) in direction d ∈

{n, e, s, w, d, u} do
4: if (p, q, r) ∈ T and (p, q, r) ≺ (i, j, k) then
5: ld ← S̄(p, q, r)
6: else
7: ld ← ‘-’
8: end if
9: end for

10: R ← R∪ {(ln, le, ls, lw, ld, lu, S̄(i, j, k))}
11: end for
12: return R

a large class of structures. The assembly graph algorithm
requires an initial, undirected adjacency graph for a target
T . We form this adjacency graph G = (V,E) by:

• adding a vertex v(i,j,k) to the set V for each cell in
(i, j, k) ∈ T , and

• adding an undirected edge (v(i,j,k), v(p,q,r)) to the set E
for every pair of adjacent cells (i, j, k), (p, q, r) ∈ T .

Using the undirected graph G, which defines the static
relationships between components in the final structure, we
can construct a new, directed graph G′ which contains
information about the dynamic relationships that exist as
the structure evolves from the seed.1 We form a directed
assembly graph G′ for T from the same set of vertices V , by
adding a directed edge from vertex v(i,j,k) to vertex v(p,q,r)

if the corresponding cell (i, j, k) is adjacent to cell (p, q, r)
and (i, j, k) is a predecessor of (p, q, k). A sink vertex in the
graph represents a cell with no successors. There is a single
source vertex in the graph corresponding to the seed cell.
Note also that we can associate a set of exterior boundary
vertices (resp. interior vertices) in V with the set of exterior
boundary cells (resp. interior cells) in T .

We now consider the problem of generating valid assembly
orderings for specific targets. In general, there may be many
valid orderings for a given target; the algorithm presented
here generates a breadth-first assembly graph and ordering.
The assembly graph is built by traversing the target’s adja-
cency graph breadth-first, starting from the seed.

Algorithm 1 is a modified version of the standard breadth-
first graph traversal. As we encounter each vertex in the
undirected graph G, we incrementally build a corresponding
assembly graph G′ by adding a set of directed edges. When
we arrive at a vertex v, we add directed edges from all

1We will use the prime marker, ′, to indicate that a graph is directed.

175

(-1, 0, 0)

(-1, -1, 0) (-1, 1, 0)

(0, -1, 0)

(1, -1, 0)

(0, 0, 0)

(0, 1, 0) (0, 0, -1) (0, 0, 1)(1, 0, 0)

(1, 1, 0) (0, 0, -2)

(0, -1, -2) (0, 1, -2)

(0, 0, 2)

(0, -1, 2) (0, 1, 2)

Fig. 2: Breadth-first assembly graph for structure shown in Figure 1. The graph was generated by Algorithm 1. Each node
corresponds to a lattice cell; edges in the graph indicate predecessor-successor relationships.

adjacent, previously-visited vertices to the set E′.
To determine if the graph produced by Algorithm 1 rep-

resents a valid ordering, we can directly apply Theorem 1.
The algorithm adds a directed edge between every adjacent
pair of vertices in G, and the breadth-first traversal ensures
that G′ is acyclic. If all sink vertices in G′ are exterior
boundary vertices, then the graph represents a valid ordering.
Conversely, if an interior sink vertex exists, then the graph
cannot represent a valid ordering because there is at least one
interior vertex without an adjacent successor. As an example,
the (valid) assembly graph generated by Algorithm 1 for
Structure A is shown in Figure 2.

C. From Graph to Assembly Rules

Once we have a valid assembly graph G′ = (V,E′) for T ,
we can compile a set of local assembly rules from the graph.
We first produce the set of pairwise ordering constraints
(which define the assembly ordering (T ,≺)) by visiting every
vertex v ∈ V , adding a single constraint for each edge that
is incident on v.

To build the rule set, we begin with an empty lattice, and
place a component with a unique label at each position in
T , creating a labeled structure S̄. Then, as described by
Algorithm 2, we step through the assembly ordering cell
by cell, adding rules sequentially to the rule set. For a
cell (i, j, k), we add a rule whose binding configuration is
defined by the labels on components in adjacent predecessor
cells (with non-predecessor entries set to ‘-’), and using the

Algorithm 3 Worst-Case Rule Set
Input: Target T and valid ordering (T ,≺)
Output: Consistent rule set R

1: S̄ ← structure produced by placing a uniquely-labeled
component at each cell in T

2: R ← rule set generated by Alg. 2 from (S̄, (T ,≺))
3: return (S̄,R)

resultant label already assigned to the component in cell
(i, j, k).

The drawback of this procedure, described by Algorithm
3, is that |T | labels and |T | − 1 rules are always required
for a |T |-cell target. We call such a |T |-label rule set the
worst-case rule set for T , and use this worst-case solution as
the input to the optimization algorithm described in the next
section.

V. LABEL SET OPTIMIZATION

For physically very simple assembly components, the
sensing fidelity required to correctly recognize a large number
of distinct labels may be difficult to achieve in practice.
However, it is often possible to exploit symmetry and self-
similarity within a structure to compress the size of the
label set. This naturally leads to two related combinatorial
optimization problems:

• The (Full) Minimum Label Set Problem: Given a
target T , find a valid assembly ordering (T ,≺) and rule
set R such that R is consistent for T under (T ,≺) and
uses the minimum number of unique labels possible.

• The Restricted Minimum Label Set Problem: Given
a target T and a valid assembly ordering (T ,≺), find a
rule set R such that R is consistent for T under (T ,≺)
and uses the minimum number of unique labels possible.

In [1], we proposed an algorithm called randomized (or
stochastic) contraction as an approximate solution for the
Restricted MLS problem. We briefly describe the algorithm
below; a more complete exposition is given in [1] and [15].

The contraction algorithm operates by attempting to iter-
atively reduce (contract) the size of a label set L. Given a
target T and a valid assembly ordering, we generate a worst-
case rule set R and the associated labeled structure S̄ using
Algorithm 3. Then, at each iteration, we randomly select a
component in S̄, change the label on the component to a
random value between 1 and the existing value, and generate

176

(a) Structure B (b) Structure C (c) Structure D

Fig. 3: a) Structure B, composed of 46 assembly components, b) Structure C, composed of 274 assembly components, and
c) Structure D, composed of 412 assembly components. The seed components are shown in gray.

an updated rule setR∗ using Algorithm 2. IfR∗ assembles T
only, the change is accepted, otherwise the change is rejected.
This process continues for a certain number of iterations, or
until there is no further improvement (reduction in the label
count).

It is possible to verify in polynomial time whether or not
a candidate rule set R∗ assembles T only (while respecting
the assembly ordering). We presented an algorithm in [1]
which performs this consistency check; we give only a short
description here. The algorithm operates by maintaining a set
K of empty cells that form part of the frontier of the growing
structure S̄. The frontier set is the set of cells adjacent to
occupied cells already in S̄, at which a binding event could
occur at the next time step. At each assembly step and for
every position in K, the algorithm determines if more than
one rule can potentially be applied, or if there is a rule which
would add a component at a position not in T . If either
condition is true, the rule set does not uniquely assemble T .
Otherwise, the algorithm iteratively adds components to the
labeled structure S̄ until no further rules can be applied. If,
at that time, S̄ has the same number of occupied cells as T ,
then R is consistent for T . The consistency check requires
O(|R||T |) time.

VI. EXPERIMENTS

We performed a series of experiments to verify the op-
eration of the ordering and optimizations algorithm for the
example structures shown in Figures 1 and 3. Optimization
results are given in Table I. The table also lists the number
of assembly steps for each structure. This is the number of
steps required to assemble the entire target, if all possible
binding sites on the exterior of the growing structure are
filled synchronously at every step. The metric corresponds
to the length of the longest path in the assembly graph, and
gives some indication of the overall assembly time.

The results in Table I show that, in all cases, we are able to
significantly reduce the number of labels required to assemble
each structure (compared to the worst case). For Structure
A, it is possible to verify by brute force that the rule set
is optimal by our criterion, using the minimal number of

labels possible. The optimized rule set for Structure A is
listed in Table II. In the case of Structure D, which appeared
previously in [12], we are able to produce the exact structure
deterministically, instead of with some statistical probability,
at the expense of using more labels than in [12].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we extended our previous work on pla-
nar distributed assembly to three dimensions. Our primary
contribution was a group of algorithms for generating local
assembly rules which are guaranteed to produce a desired
global result (structure), despite the limited capabilities and
random actions of the agents involved. This result, coupled
with our label set optimization algorithm, enables the pro-
duction of compact sets of assembly rules for a wide variety
of structures.

We are pursuing a number of directions for future work.
Currently, we are performing a series of simulation studies to
characterize the relationship between the choice of assembly
graph and the average assembly time. We are also exploring
ways to further reduce the number of labels required to as-
semble a structure, by purposely using an under-constrained
rule set and evaluating the outcome in terms of the statistical
percentage yield of the desired end product. Ultimately, we
hope to build a physical implementation of the model we
have described.

ACKNOWLEDGEMENTS

This research was funded in part by grants from the
Government of Canada (NSERC) and the Government of
Alberta (iCORE).

APPENDIX: PROOF OF THEOREM 1

Proof: Our connectivity constraint requires that every
cell except the seed have at least one adjacent predecessor,
so the first clause of Theorem 1 is immediately satisfied.
Further, cells in the exterior boundary set for T are always
accessible (assuming that components only bind to the struc-
ture at positions in T)2, and can therefore be removed from

2We show how to generate assembly rules which enforce this in [15].

177

TABLE I: Optimization Results for Structures A through D

Structure Rules Labels Steps Iterations

A (17 components) 14 4 3 55

B (46 components) 35 23 12 1,985

C (274 components) 189 114 33 24,607

D (412 components) 289 41 19 17,953

consideration. So we must now show that an ordering is valid
if and only if each interior cell has an adjacent successor cell.
We prove by contradiction.

Consider an interior cell (i, j, k), and assume that the
assembly ordering is valid but that (i, j, k) has no succes-
sors. If (i, j, k) has no successors, then we must be able
to assemble the remaining components in T regardless of
whether cell (i, j, k) is occupied or not – there are no
constraints in (T ,≺) that prevent this. Assume that (i, j, k)
is empty and, according to (T ,≺), we place components in
the remaining cells in T . Cell (i, j, k) is an interior cell, and
the final structure is connected, so there must exist a subset
of occupied cells Q ⊂ T that block access to (i, j, k) –
otherwise (i, j, k) would be an exterior boundary cell. But if
(T ,≺) is valid, then such a subset cannot exist, and we have
reached a contradiction.

Conversely, assume that every interior cell in T has an
adjacent successor cell, but that the assembly ordering is not
valid. Consider an inaccessible interior cell (i, j, k), and let
Q ⊂ T be a set of occupied cells that block access to (i, j, k).
Let W be the set containing (i, j, k) and any successors of
(i, j, k) that are also blocked by Q. There must exist a cell
(p, q, r) ∈W that does not have an adjacent successor, since
W is finite and the predecessor relation is anti-symmetric.3

According to (T ,≺), (p, q, r) must therefore be an exterior
boundary cell. But if (p, q, r) is an exterior boundary cell, it
is always accessible, and cannot be blocked by Q. We have
again reached a contradiction, which completes the proof.

REFERENCES

[1] J. Kelly and H. Zhang, “Combinatorial Optimization of Sensing for
Rule-Based Planar Distributed Assembly,” in Proc. IEEE/RSJ Int’l
Conf. Intelligent Robots and Systems (IROS’06), Beijing, China, Oct.
2006, pp. 3728–3734.

[2] L. Adleman, “Towards a Mathematical Theory of Self-Assembly,”
Department of Computer Science, University of Southern California,
Los Angeles, USA, Tech. Rep. 00-722, Jan. 2000.

[3] P. Rothemund and E. Winfree, “The Program-size Complexity of Self-
assembled Squares,” in Proc. Thirty-Second Ann. ACM Symp. Theory
of Computing (STOC’00), Portland, USA, May 2000, pp. 459–468.

[4] L. Adleman, Q. Cheng, A. Goel, and M.-D. Huang, “Running Time and
Program Size for Self-assembled Squares,” in Proc. Thirty-Third Ann.
ACM Symp. Theory of Computing (STOC’01), Hersonissos, Greece,
July 2001, pp. 740–748.

3We prove this property of the predecessor relation in [15].

TABLE II: Optimized rule set for Structure A

Rule # Binding Resultant
Configuration Label

(n, e, s, w, d, u)

1 (0, 0, 0, 0, 0, 1) 3

2 (0, 0, 0, 0, 0, 3) 4

3 (0, 0, 0, 0, 1, 0) 3

4 (0, 0, 0, 0, 3, 0) 4

5 (0, 0, 0, 1, 0, 0) 2

6 (0, 0, 0, 4, 0, 0) 2

7 (0, 0, 1, 0, 0, 0) 2

8 (0, 0, 2, 2, 0, 0) 2

9 (0, 1, 0, 0, 0, 0) 2

10 (0, 2, 2, 0, 0, 0) 2

11 (0, 4, 0, 0, 0, 0) 2

12 (1, 0, 0, 0, 0, 0) 2

13 (2, 0, 0, 2, 0, 0) 2

14 (2, 2, 0, 0, 0, 0) 2

[5] L. Adleman, Q. Cheng, A. Goel, M.-D. Huang, D. Kempe, P. M.
de Espanés, and P. W. K. Rothemund, “Combinatorial Optimization
Problems in Self-Assembly,” in Proc. Thirty-Fourth Ann. ACM Symp.
Theory of Computing (STOC’02), Montréal, Canada, May 2002, pp.
23–32.

[6] E. Klavins, “Directed Self-Assembly Using Graph Grammars,” in
Foundations of Nanoscience: Self Assembled Architectures and De-
vices, Snowbird, USA, Apr. 2004.

[7] R. Ghrist and D. Lipsky, “Grammatical Self Assembly for Planar
Tiles,” in Proc. IEEE Int’l Conf. MEMS, NANO, and Smart Systems
(ICMENS’04), Banff, Canada, Aug. 2004, pp. 205–211.

[8] C. V. Jones and M. J. Matarić, “From Local to Global Behavior in
Intelligent Self-Assembly,” in Proc. IEEE Int’l Conf. Robotics and
Automation (ICRA’03), Taipei, Taiwan, Sept. 2003, pp. 721–726.

[9] D. Arbuckle and A. A. G. Requicha, “Active Self-Assembly,” in Proc.
IEEE Int’l Conf. Robotics and Automation (ICRA’04), vol. 1, New
Orleans, USA, Apr. 2004, pp. 896–901.

[10] E. Bonabeau, G. Theraulaz, E. Arpin, and E. Sardet, “The Building
Behavior of Lattice Swarms,” in Proc. Fourth Int’l Workshop on the
Synthesis and Simulation of Living Systems, R. A. Brooks and P. Maes,
Eds., Artificial Life IV. Cambridge, USA: MIT Press, 1994, pp. 307–
312.

[11] G. Theraulaz and E. Bonabeau, “Coordination in Distributed Building,”
Science, vol. 269, no. 5224, pp. 686–688, Aug. 1994.

[12] E. Bonabeau, S. Guéin, D. Snyers, P. Kuntz, and G. Theraulaz,
“Three-dimensional architecture grown by simple ‘stigmergic’ agents,”
Biosystems, vol. 56, no. 1, pp. 13–32, 2000.

[13] J. Werfel, Y. Bar-Yam, and R. Nagpal, “Building Patterned Structures
with Robot Swarms,” in Proc. Nineteenth Int’l Joint Conf. Artificial
Intelligence (IJCAI ’05), Edinburgh, Scotland, Aug. 2005, pp. 1495–
1502.

[14] J. Werfel and R. Nagpal, “Three-Dimensional Construction with Mo-
bile Robots and Modular Blocks,” Int’l J. Robotics Research, vol. 27,
no. 3–4, pp. 463–479, Mar./Apr. 2008.

[15] J. Kelly, “Algorithmic Distributed Assembly,” Master’s thesis, Univer-
sity of Alberta, Edmonton, Canada, Apr. 2008.

178

